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Abstract

The purpose of this paper is to study the behaviors shown by a modified mathematical model representing interactions
etween immune cells, un-infected tumor cells, infected tumor cells, and normal cells when subjected initially to chemotherapy
nd virotherapy alone and subsequently a combination of both. Stability analysis is carried out for all steady states in each
reatment model. Conditions are derived under which recurrence of tumors can be prevented when the amount of applied
rugs are reduced. Analysis of the model shows that the tumor can be eliminated with a lower dose of chemotherapy if
t is combined with virotherapy. The existence of an optimal control set, and optimality of the model are discussed. The
ptimal control problem relative to the model is designed in a way to reduce the number of tumor cells and the amount of
hemotherapeutic drugs and at the same time to increase the positive effect of virotherapy to improve the immune system,
hereby causing a reduction in patient’s recovery time.

2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

Cancer is one of the most feared and persistent killer diseases. Cancer can develop in almost any organ or tissue
f the body. In the case of cancer patients, abnormal cells grow uncontrollably, exceeding their normal limits, and
hese abnormal cells invade adjoining parts of the body and thus spread to other organs [22]. According to the
018 report of WHO [6], 18.1 million people worldwide had cancer, 9.6 million died. By 2040, those figures will
e almost doubled [6]. Cancer treatment is, therefore, still a significant field of research. Surgery, chemotherapy,
nd radiation therapy are traditional methods adopted for cancer treatment. Nevertheless, the major drawback of
hese therapies is that they involve a high level of toxicity. To overcome this drawback, nowadays, immunotherapy,
irotherapy, etc., are used along with chemotherapy. Immunotherapy, which uses genetically engineered cytokines,
s used to boost up the immune system. The fundamental goal of virotherapy treatment is selective damage of
ancerous cells with virus infection while leaving normal cells undamaged. Virotherapy can replicate viruses within
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infected tumor cells, which ultimately leads to an extensive tumor cell lysis (oncolysis), as well as a high-risk signal.
Also, it can stimulate the immune system through the concomitant release of both tumoral and viral antigens [8].
Though this treatment has fewer side effects yet, it cannot eliminate the tumor if used alone. Survival rates on
monotherapies alone are generally poor, especially in metastatic or end-stage cases. Treatment of cancer with the
combination of multiple therapies has led to significant improvements in the standard of care and cure for different
cancer patients.

Most types of cancers often relapse because of their resistance to traditional therapies [39]. So, aggressive
ombination therapies are the need of the hour for combating cancer. Combination therapies such as radio-
mmunotherapy [15,35], radio-virotherapy [9,36], immunotherapy combined with other therapies [24,38], etc.,
re the current types of therapies used for cancer treatment. Recently, chemo-virotherapy, a combination of
hemotherapy and oncolytic viruses, has gained increasing importance in clinical settings. The implication of using
hemo-virotherapy is that oncolytic viruses either directly target tumor cells or transmit genes that make the tumor
ells more susceptible to chemotherapeutic drugs [20]. Mukhopadhyay and Bhattacharya [26] presented a model of
umor-immune-virus interactions and demonstrated the importance of different regulatory parameters in controlling

odel energy. Malinzi et al. 2017 [20] have shown that chemotherapy alone cannot eradicate tumor cells but can
educe tumor concentration to a much lower level if combined with an oncolytic virus. Phan and Tian [28] modified
he works of Malinzi et al. by adding another state variable. They studied the effect of innate immune responses
n infected cancer cells and the virus population. Malinzi et al. 2018 [21] showed how virotherapy improves the
ffect of chemotherapy. They showed that a patient could be cured even by applying half of the maximum tolerable
oses in the case of combination. Abernathy et al. [2] studied the necessary and adequate medical conditions for
irotherapy to ensure a globally stable treatment model. They showed that when these conditions were violated,
elapse of cancer could occur. S. M. Al-Tuwairqi et al. [4] modified the mathematical model in [2] by introducing
n interaction between the innate immune system and uninfected tumor cells and showed that the tumor cells
nd virus are detected by natural killer (NK) cells which are part of the innate immune system [23,25,31,40].
ost authors [1,3,7,12,16,19,27,29] worked with mathematical models that consider interactions between oncolytic

irus, uninfected and infected tumor cells. De. Pills et al. [30] tested the limit sets of a steady-state and showed that
hemotherapy could be stopped as soon as the orbit enters the basin of attraction of the tumor-free steady state. A
ew other authors [18,33,34,37] analyzed the combined effect of normal cells and various other therapies in their
odels. K. J. Mahasa et al. [18] showed that viral infection in normal cells could increase oncolytic virotherapy

f the virus replicates rapidly within infected cells. Oncolytic virotherapy infects and destroys tumor cells but does
ot kill normal cells, and the same has been reported in the NCI report [37]. Some researchers [21,33,34] have
eveloped mathematical models to study the interaction between uninfected–infected tumor growth subjected to
hemo-virotherapy and find the best possible result by applying optimal control theory. Optimal control dramatically
elps to reduce the tumor cell load with optimal drug administration, which can minimize the time for a patient to
et cured with minimum side effects.

The purpose of this paper is to propose and analyze a modified model which has been formulated by modifying
he models proposed by Malinzi et al. [21] and De Pillis et al. [30]. We have studied the long-term dynamics
rising from the combined treatment of oncolytic virotherapy and chemotherapy on immune-tumor-normal cells.
he paper is structured as follows: Section 2 describes the proposed model and the basic assumptions. In Section 3,
e examine the positive invariance and boundedness of the model solutions. Description of the treatment methods

s stated from a biological point of view. We analyze three sub-models: only chemotherapy model, only virotherapy
odel, a combined chemotherapy and virus therapy model. Stability analysis has been done for all steady states

nderestimated parameter values taken from earlier papers. Above mentioned three sub-models are analyzed in
ections 4, 5, and 6, respectively. In Section 7, we set up an optimal control problem related to our study and
nalyze it. Pontryagin’s maximum principle was used for this purpose. In Section 8, simulations and comparison
esults are explained. Conclusions and references are given in the final section.

. Model formulation

The use of viruses for cancer treatment began during the 1950s with tissue culture and rodent cancer models
evelopment. Viruses that reproduce themselves efficiently within cancer cells without harming normal cells are
ound in nature and can be modified in the laboratory. Oncolytic viruses have been viewed as a tool by many
esearchers to kill cancer cells directly. Recent research further suggests that some oncolytic viruses may work at
461
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Fig. 1. Symmetric diagram of immune-tumor-normal cells in the presence of virus and chemotherapy drugs.

east in part by triggering an immune response against cancer [21]. When a virus infects a tumor cell, it copies
ithin the tumor cell until it bursts. The dying cancer cell releases tumor antigens which help the immune system

o recognize cancer cells. (See Fig. 1.)
One of the main drawbacks of chemotherapy is that it kills both cancerous and healthy normal cells. So,

he patient’s immune system is weakened in this treatment method, making the patient prone to dangerous
iseases [33]. On the contrary, when applied alone, the average duration of virotherapy treatment is three years
ith scheduled monitoring [2]. However, combination treatment strategies with chemotherapy and virotherapy have

hown significant promise for cancer treatment [21]. Under this strategy, the main aim is to kill tumor cells and,
t the same time reduction in the amount of drug administration. Thus, it reduces the potentially toxic effects of
oxic chemicals caused by the overuse of drugs. Thus, the main goal of chemo-virotherapy is to eradicate tumor
ells while maintaining a sufficient level of normal cells so that the patient can withstand side effects and attacks
f other opportunistic diseases.

.1. Model description and assumptions

In this section, we propose and formulate our modified mathematical model describing a tumor’s growth when
ubjected to chemotherapy and oncolytic virotherapy treatments. First, we consider the dynamics of interacting cell
opulations: immune cells, tumor cells, normal cells, free viruses when subjected to chemotherapy. Then, after
njecting with an oncolytic virus, the model presented here subdivides the tumor cell population into uninfected
umor cells U (t) and infected tumor cells I (t). The following assumptions are made in setting up the model.

Without treatment, the tumor grows logistically with a carrying capacity 1/b1. Virus infections kill tumor
ells, whereas chemotherapy drugs kill all types of cells. Moreover, virus infection kills tumor cells in the
ichaelis–Menten form, whereas chemotherapy and immune cells kill tumor cells in the Lotka–Volterra form.
With virus treatment, the virus-specific immune response is proportional to the infected tumor cells popula-

ion [21], which is represented in the last term of the first equation by the term ϕ I , where ϕ is the virus-specific
mmune response. This term has not been applied in the model proposed by De Pillis et al. [30]. Virus production
s a function of virus burst size and the death of infected immune cells. The number of viruses, therefore, increases
s infected tumor cell density multiplies. Therefore, the infected cells, I , are infected with the virus at a dose of

d2 I , thus acting as the source of the virus by releasing free virions into the tissue space by b virions released at
the rate of each cell, which has been incorporated in the first term in Eq. (2.5) [11].

We consider both virus and tumor-specific immune responses. These viruses can be modified to provide beneficial
properties, including reducing the ability of tumor cells to infect healthy cells and allowing to deliver therapeutic
payloads specifically to tumors and infected tumor cells by producing immune-enhancing cells [5]. We also assume
that the number of tumor cells grows faster than normal cells.

The presence of tumor cells stimulates the immune response, represented by the Michaelis–Menten term,
ρ(U + I )E/(σ + (U + I )), where (U + I ) = T , is the total number of tumor cells and ρ and σ are positive
constants. This type of response term is the same as the term used in the relevant models of De Pillis et al. [30],
Kuznetsov et al. [14], and Kirschner and Panetta [13]. We assume that the term (ρ1U V )/(σ1 + U ) describes an
nfection of tumor cells by the virus where ρ1 is the infection rate and σ1 is the Michaelis–Menten constants.
nfection of tumor cells by the virus is consistent with the assumptions made in Malinzi et al. [21].
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2.2. Model equations

We propose the following model describing the interactions between immune cells E , uninfected tumor cells U,
nfected tumor cells I , normal cells N , virotherapy V and chemotherapy C .

d E
dt

= µ+
ρ (U + I ) E
σ + (U + I )

− d1 E − k1 EU − a1 EC + ϕ I, (2.1)

dU
dt

= r1U (1 − b1 (U + I ))−
ρ1U V
σ1 + U

− k2 EU − k3 NU − a2UC, (2.2)

d I
dt

=
ρ1U V
σ1 + U

− d2 I − k4 I E − a3 I C, (2.3)

d N
dt

= r2 N (1 − N )− k5U N − a4 NC, (2.4)

dV
dt

= bd2 I −
ρ1U V
σ1 + U

− δV, (2.5)

dC
dt

= u − d3C, (2.6)

The initial conditions for the model are assumed to be:

E (0) = E0,U (0) = U0, I (0) = I0, N (0) = N0, V (0) = V0,C (0) = C0,

here the constants E0,U0, I0, N0, V0,C0 denoted the initial concentration of immune cells, uninfected tumor cells,
nfected tumor cells, normal cells, free virus particles, chemotherapy drugs respectively. They are assumed to be
on-negative to make those biologically meaningful.

In Eq. (2.1), the term µ represents the constant source rate of immune cells already present in our body. The
erm ρ(U + I )E/(σ + (U + I )), describes tumor-specific immune response, where (U + I ) = T , is the total number
f tumor cells, ρ is the maximum recruitment of immune cells by tumor cells and σ is the half-saturation for the
roliferation term [21]. The term −d1 E represents the natural decay rate of immune cells. Tumor-specific immune
ecay and kill rate of immune cells due to drug administration are represented as −k1 EU,−a1 EC respectively.

In Eqs. (2.2) and (2.3), the term r1U (1 − b1 (U + I )) represents tumor growth where r1 is the intrinsic growth
ate of the tumor. The term (ρ1U V )/(σ1 + U ) describes an infection of tumor cells by the virus where ρ1 is the
nfection rate and σ1 is the Michaelis–Menten constants. The terms −k2 EU,−k3 NU,−a2UC are respectively the
ecay rate of uninfected tumor cells due to immune cells, normal cells, and drug administration. The term −d2 I is
he natural death rate of infected tumor cells and −k4 I E,−a3 I C are respectively the decay rate of infected tumor
ells due to immune cells and drug administration.

In Eq. (2.4), the term r2 N (1 − N ) represents normal cell growth where r2 is the intrinsic growth rate of normal
ells with maximum carrying capacity one. The term −k5U N represents the decay rate of normal cells due to
ninfected tumor cells and −a4 NC is the killed rate of normal cells due to drug administration.

In Eq. (2.5), the term bd2 I represents virus proliferation rate where the virus burst size is b and d2 is the death
ate of infected tumor cells. The term −(ρ1U V )/(σ1 + U ) represents the loss of free virus due to infection of the
ninfected tumor cells. Virus deactivation in the body tissue is represented by the term −δV .

In Eq. (2.6), the dose of chemotherapeutic drug given is represented by u and the term −d3C represents the drug
dministration decay rate.

. Positive invariance and boundedness

Before we proceed with the mathematical analysis, we need to show that the model with considered parameter
alues is biologically feasible. According to the standard comparison theory, it follows

d E
= µ+

ρ (U + I ) E
− d1 E − k1 EU − a1 EC + ϕ I ≤ µ− d1 E,
dt σ + (U + I )
463
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Integration of the above leads to

E (t) ≤
µ

d1
+ e−d1t E (0) => lim

t→∞

sup (E (t)) ≤
µ

d1
,

gain,

dU
dt

+
d I
dt

= r1U (1 − b1 (U + I ))−
ρ1U V
σ1 + U

− k2 EU − k3 NU − a2UC +
ρ1U V
σ1 + U

− d2 I − k4 I E − a3 I C

≤ r1 (U + I ) (1 − b1 (U + I )) ,

roceeding as above, we have

(U + I ) (t) ≤
1

b1 + (U + I ) (0) e−r1t
=> lim

t→∞

sup ((U + I ) (t)) ≤
1
b1
,

Similarly, we have

dV
dt

≤ b − δV => lim
t→∞

sup (V (t)) ≤
b
δ
,

d N
dt

≤ r2 N (1 − N ) => lim
t→∞

sup (N (t)) ≤ 1,

and
dC
dt

≤ u − d3C => lim
t→∞

sup (C (t)) ≤
u
d3
,

Thus, the feasible region is defined as: ψ =
{
(E,U, I, N , V,C) ϵR6

+

}
.

We assume that the initial values E (0) ≥ 0,U (0) ≥ 0, I (0) ≥ 0, N (0) ≥ 0, V (0) ≥ 0, and C (0) ≥ 0 then
E (t) ≥ 0,U (t) ≥ 0, I (t) ≥ 0, N (t) ≥ 0, V (t) ≥ 0 and C (t) ≥ 0 for all t > 0.

The trajectories evolve in the attracting regions

ψ =

{
(E,U, I, N , V,C) ∈ R6

+
|E (t) ≤

µ

d1
,U (t)+ I (t) ≤

1
b1
, N (t) ≤ 1, V (t) ≤

b
δ
,C (t) ≤

u
d3

}
.

he domain ψ is positive invariant for the model equations (2.1) to (2.6) and therefore biologically meaningful for
he cell concentration. This verifies that the model formed by Eqs. (2.1) to (2.6) is biologically feasible.

.1. Immune-normal cells response at tumor growth

Initially, we want to check when a patient should be subjected to some treatment method. For this purpose,
t is required to look at the growth pattern of the tumor when the interaction takes place between immune and
ormal cells only (without treatment). Numerical resolutions presented in Fig. 2 show that the immune system
an eliminate small tumors, but it is overwhelmed by larger tumors. More specifically, the immune system can
liminate the growth rate of tumor cells up to r1 ≤ 0.2 but fails to inhibit the larger growth rate of the tumor
.e., when r1 > 0.2. This shows that some form of treatment method becomes necessary when r1 > 0.2.

. Dynamic behavior of the model with only chemotherapy

We consider the case U (t) + I (t) = T (t), where T (t) is the total number of tumor cells. As the model is
onsidered with chemotherapy only, V (t) = 0 and ϕ = 0. Here, the infected tumor density is zero throughout the
issue since there was no virotherapy treatment.

d E
dt

= µ+
ρT E
σ + T

− d1 E − k1 ET − a1 EC,

dT
dt

= r1T (1 − b1T )− k2 ET − k3 N T − a2T C,

d N
= r2 N (1 − N )− k5T N − a4 NC, (4.1)
dt
464
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dC
dt

= u − d3C,

The initial conditions for the model are: E (0) = E0, T (0) = T0, N (0) = N0,C (0) = C0 where each initial value
s positive.

Fig. 2. The plot shows that the dynamics of tumor cells as a result of auto-regulatory cell–cell interactions. Initial points are E (0) =

.2, T (0) = 0.05 and N (0) = 0.6.

.1. Analysis of the model

In this section, we show the existence of the steady states for the model (4.1) and study their stabilities. Main
dvantage of studying stability is to investigate the possibilities of eliminating the tumor and investigate the effect
f the chemotherapeutic drug.

.2. Existence of steady states

efinition 1. Point x ∈ Rn is called the steady state of the model if f (x) = 0.

From Definition 1, we obtain the following existing steady states:
i) P1(E∗

1 , 0, N ∗

1 ,C∗

1 ), where the tumor cells population is zero. Here, E∗

1 =
µ

d1+a1C∗
1
, N ∗

1 =
r2−a4C∗

1
r2

,C∗

1 =
u
d3

= C∗.
(ii) P2(E∗, T ∗, N ∗,C∗), coexisting steady state, where immune-tumor-normal cells co-exist with non-zero popula-
tion after treatment.

Here,

E∗
=

µ(σ + T ∗)
(d1 + k1T ∗ + a1C∗)(σ + T ∗) − ρT ∗

, N ∗
=

r2 − k5T ∗
− a4C∗

r2
,C∗

=
u
d3

and

T ∗
=

1
r1b1

(
r1 − k2 E∗

− k3 N ∗
− a2C∗

)
=

1
b1

−
k2

r1b1
(

µ (σ + T ∗)

(d1 + k1T ∗ + a1C∗)(σ + T ∗) − ρT ∗
) −

k3

r1b1

(
r2 − k5T ∗

− a4C∗

r2

)
−

a2C∗

r1b1
,

r

A11T ∗3
+ A12T ∗2

+ A13T ∗
+ A14 = 0, (4.2)

here,

A11 = k1 (r1r2b1 − k3k5) ,

A = (r r b − k k ) (d + k σ + a C∗
− ρ) + k (r k − r r + a r C∗

− k a C∗),
12 1 2 1 3 5 1 1 1 1 2 3 1 2 2 2 3 4
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A13 = (r2k3 − r1r2 + a2r2C∗
− k3a4C∗)(d1 + k1σ + a1C∗

− ρ) + σ (r1r2b1 − k3k5) (d1 + a1C∗) + µr2k2,

A14 = σ (r2k3 − r1r2 + a2r2C∗
− k3a4C∗)(d1 + a1C∗) + µr2k2σ,

or the existence of T ∗, discriminate must be positive.
Since N = 0 is the death case, so we discard this steady state.

.3. Stability analysis of the steady states

We investigate the stability of these steady states by linearizing the model (4.1) about each of the steady states.
he Jacobian matrix of model (4.1) at an arbitrary point is given by

J =

⎛⎜⎜⎝
P11 P14 0 −a1 E

−k2T P12 −k3T −a2T
0 −k5 N P13 −a4 N
0 0 0 −d3

⎞⎟⎟⎠ , (4.3)

here, P11 =
ρT
σ+T − d1 − k1T − a1C, P12 = r1 − 2r1b1T − k2 E − k3 N − a2C, P13 = r2 − 2r2 N − k5T − a4C, P14 =

σρE
(σ+T )2

− k1 E .
As shown in Section 4.2, the model (4.1) has two steady states.

(i) P1(E∗

1 , 0, N ∗

1 ,C∗

1 ), tumor free state: The eigenvalues of the Jacobian matrix (4.3) evaluated at this steady state
P1 are

λ1 = −d1 − a1C∗

1 , λ2 = r1 − k2 E∗

1 − k3 N ∗

1 − a2C∗

1 , λ3 = r2 − 2r2 N ∗

1 − a4C∗

1 and λ4 = −d3 < 0,

o, following standard result (related to eigenvalue and stability) we can conclude that the steady state P1 is locally
asymptotically sable if the following two conditions are satisfied

1. u <
r2d3

a4
and (4.4)

2.
(
r2
(
r1 − a2C∗

1

)
− k3

(
r2 − a4C∗

1

)) (
d1 + a1C∗

1

)
< µk2r2, (4.5)

otherwise, unstable.
We consider the chemotherapy dose u in between stable range to bring the model to the tumor-free steady state.

(ii) P2(E∗, T ∗, N ∗,C∗), coexisting steady state: Here, one eigen value is λ = −d3 < 0 and the other eigen values
are derived from the Jacobian matrix J .

The characteristic equation at steady state P2 is

λ3
−
(
P ′

11 + P ′

12 + P ′

13

)
λ2

+ (P ′

11

(
P ′

12 + P ′

13

)
+ P ′

12 P ′

13 − k3k5T ∗N ∗
+ k2T ∗ P ′

14)λ+ P ′

11k3k5T ∗N ∗

− P ′

11 P ′

12 P ′

13 − k2T ∗ P ′

13 P ′

14 = 0

r

dλ3
+ X11λ

2
+ X12λ+ X13 = 0 (4.6)

here,

P ′

11 =
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗,

P ′

12 = r1 − 2r1b1T ∗
− k2 E∗

− k3 N ∗
− a2C∗,

P ′

13 = r2 − 2r2 N ∗
− k5T ∗

− a4C∗,

P ′

14 =
σρE∗

(σ + T ∗)2
− k1 E∗,

X11 = −
(
P ′

11 + P ′

12 + P ′

13

)
,

=

(
d1 + k1T ∗

+ a1C∗
− r1 + 2r1b1T ∗

+ k2 E∗
+ k3 N ∗

+ a2C∗
− r2 + 2r2 N ∗
466
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+ k5T ∗
+ a4C∗

−
ρT ∗

σ + T ∗

)
, (4.7)

X12 = P ′

11

(
P ′

12 + P ′

13

)
+ P ′

12 P ′

13 − k3k5T ∗N ∗
+ k2T ∗ P ′

14,

=

(
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

) (
r1 − 2r1b1T ∗

− k2 E∗
− k3 N ∗

− a2C∗
+ r2 − 2r2 N ∗

− k5T ∗
− a4C∗

)
+
(
r1 − 2r1b1T ∗

− k2 E∗
− k3 N ∗

− a2C∗
) (

r2 − 2r2 N ∗
− k5T ∗

− a4C∗
)

− k3k5T ∗N ∗
+ k2T ∗

(
σρE∗

(σ + T ∗)2
− k1 E∗

)
,

X13 = P ′

11k3k5T ∗N ∗
− P ′

11 P ′

12 P ′

13 − k2T ∗ P ′

13 P ′

14

=

(
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

)
k3k5T ∗N ∗

−

(
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

)
×
(
r1 − 2r1b1T ∗

− k2 E∗
− k3 N ∗

− a2C∗
) (

r2 − 2r2 N ∗
− k5T ∗

− a4C∗
)

− k2T ∗
(
r2 − 2r2 N ∗

− k5T ∗
− a4C∗

) ( σρE∗

(σ + T ∗)2
− k1 E∗

)
,

nd

X11 X12 − X13 =

(
d1 + k1T ∗

+ a1C∗
− r1 + 2r1b1T ∗

+ k2 E∗
+ k3 N ∗

+ a2C∗
− r2 + 2r2 N ∗

+ k5T ∗
+ a4C∗

−
ρT ∗

σ + T ∗

)((
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

) (
r1 − 2r1b1T ∗

− k2 E∗

− k3 N ∗
− a2C∗

+ r2 − 2r2 N ∗
− k5T ∗

− a4C∗
)
+
(
r1 − 2r1b1T ∗

− k2 E∗
− k3 N ∗

− a2C∗
)

×
(
r2 − 2r2 N ∗

− k5T ∗
− a4C∗

)
− k3k5T ∗N ∗

+ k2T ∗

(
σρE∗

(σ + T ∗)2
− k1 E∗

))
−

((
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

)
k3k5T ∗N ∗

−

(
ρT ∗

σ + T ∗
− d1 − k1T ∗

− a1C∗

)
×
(
r1 − 2r1b1T ∗

− k2 E∗
− k3 N ∗

− a2C∗
) (

r2 − 2r2 N ∗
− k5T ∗

− a4C∗
)

− k2T ∗
(
r2 − 2r2 N ∗

− k5T ∗
− a4C∗

) ( σρE∗

(σ + T ∗)2
− k1 E∗

))
, (4.8)

By Routh–Hurwitz stability criteria, if X11 > 0 and X11 X12 − X13 > 0, then P2 is locally stable and becomes
nstable when conditions are not satisfied. Validity of (4.7) and (4.8) are verified by putting the parameter values
rom Table 1.

ase 1 Considering u = 0.0260123 in stable range from conditions Eqs. (4.4) and (4.5).
Using parameter values from Table 1 and considering u = 0.0260123 in (4.2), we get.
The steady state solution is found to be (0.164,−0.00000048, 0.703, 0.52), (−0.49, 0.371, 0.439, 0.52) and

−4.808, 2.803,−1.29973, 0.52). Thus, in this case there are no biologically valid steady states.

ase 2: Considering u = 0.025 between unstable range from conditions Eqs. (4.4) and (4.5).
Using parameter values from Table 1 and considering u = 0.025 in (4.2), we get.
The steady state solution is found to be (0.177, 0.008, 0.709, 0.5), (−0.467, 0.371, 0.449, 0.5) and

−4.827, 2.829,−1.306, 0.5).
The above values show that there is only one biologically valid steady state, which is (0.177, 0.008, 0.709, 0.5)

nd its eigenvalues are (−0.279,−0.249,−0.007). This guarantees that the equilibrium is locally asymptotically
table since all eigenvalues are negative. Biologically, this signifies that chemotherapy treatment reduce the tumor
ells to a low tumor concentration state and it is locally asymptotically stable to the co-existing steady state. Also,
s it effects the immune cells and normal cells population.

In the next section, we investigated about the global stability of tumor free equilibrium point P1 and on the basis

f this investigation we forward the following theorem.
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Table 1
Parameter values considered for the model.

Parameters Meaning Values Source

µ Constant source rate of immune cells already presents in the body 0.05 [30]
ρ Maximum recruitment of immune cells by tumor cells 1 [30]
σ Half-saturation for the proliferation term 0.4 [30]
ϕ Virus-specific immune response 0.1 [2]
r1 Intrinsic tumor growth rate 0.45 (estimate) [30]
r2 Growth rate of normal cell 0.35 [30]
1/b1 Tumor population carrying capacity 2/3 [30]
ρ1 Infection rate 0.4 (estimate) [27]
σ1 Michaelis–Menten constants 0.2 (estimate) [27]
δ Virus deactivation in the body tissue 0.001 [1]
d1 Natural decay rate of immune cells 0.2 [30]
d2 Natural death rate of infected tumor cells 0.01 [30]
d3 Natural decay rate of drug 0.05 [30]
a1 Immune cells kill rate due to drug 0.2 [30]
a2 Uninfected tumor cell kill rate due to drug 0.5 [30]
a3 Infected tumor cell kill rate due to drug 0.1 [30]
a4 Normal cells kill rate due to drug 0.2 [30]
k1 Decay rate of immune cells due to uninfected tumor cells 0.2 [30]
k2 Decay rate of uninfected tumor cells due to immune cells 0.3 [30]
k3 Decay rate of uninfected tumor cells due to normal cells 0.2 [30]
k4 Decay rate of infected tumor cells due to immune cells 0.05 [30]
k5 Decay rate of normal cells due to uninfected tumor cells 0.25 [30]
u Dose of chemotherapy drug Varied
b Virus burst size Varied

Theorem 4.1. The healthy steady state P1 is globally asymptotically stable if the steady state P1 is locally stable,
and the following conditions

k2 E∗

1 + k3 N ∗

1 + a2C∗

1 > r1, E =
µ

d1
, T =

1
b1
, C =

u
d3
,

are satisfied.

Proof of Theorem 4.1 can be found in Appendix A.
Next, we carry out the following numerical resolutions.
Fig. 3 shows evaluation of the model with chemotherapy treatment. At a high dose of chemotherapy drug

administration rate i.e., u = 0.027, the tumor is eradicated. This model allows complete removal of the tumor
only when treatment is introduced with growth rate of the tumor r1 = 0.45. Fig. 3 further shows that this
hemotherapeutic drug administration also leads to damage of normal cells and immune cells as side effects. So, it
an be concluded that though with increased drug amount, chemotherapy alone is capable of cleaning tumor cells,
ut it has a serious drawback of reducing the number of normal cells approximately below 70% of the carrying
apacity. Further, this treatment method also takes more time to eradicate the tumor cells.

. Dynamic behavior of the model with only virotherapy

To analyze the effect of virotherapy on immune-tumor-normal cells, we study the model with only virotherapy
reatment i.e., C (t) = 0.

d E
dt

= µ+
ρ (U + I ) E
σ + (U + I )

− d1 E − k1 EU + ϕ I,

dU
dt

= r1U (1 − b1 (U + I ))−
ρ1U V
σ1 + U

− k2 EU − k3 NU,

d I
=
ρ1U V

− d2 I − k4 I E, (5.1)

dt σ1 + U
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d N
dt

= r2 N (1 − N )− k5U N ,

dV
dt

= bd2 I −
ρ1U V
σ1 + U

− δV,

with initial conditions E (0) = E0,U (0) = U0, I (0) = I0, N (0) = N0, V (0) = V0 where each initial value is
ositive.

Fig. 3. Time-series solutions of the model (4.1) with initial conditions: E(0) = 0.2, T (0) = 0.05, N (0) = 0.6,C(0) = 0.001. Figures (a),
b), and (c) depict the density of immune cells, tumor cells, and normal cells for different drug administration, respectively, and figure (d)
epresents the administration of the different chemo-drug doses.

.1. Analysis of the model

In this section, we study the existence of the steady states and their stabilities. As stated earlier, main advantage
f studying stability is to investigate the possibilities of eliminating the tumor and investigate the effect of virus
herapy.

.2. Existence of steady states

Following the method in Section 4.2, steady states are found to be
i) P∗

1

(
µ

d1
, 0, 0, 1, 0

)
, tumor and virus free steady state, where infected and uninfected tumor cells population are

zero. This steady state means that model is in a healthy stage.
(ii) P∗ E ,U , 0, N , 0 , infected tumor cells, and virus-free states.
2 ( 2 2 2 )
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where, E2 =
µ(σ+U2)

(d1+k1U2)(σ+U2)−ρU2
, N2 =

r2−k5U2
r2

and

U2 =
1

r1b1
(r1 − k2 E2 − k3 N2) =

1
b1

−
k2

r1b1

(
µ (σ + U2)

(d1 + k1U2)(σ + U2) − ρU2

)
−

k3

r1b1

(
r2 − k5U2

r2

)
,

Or

B11U 3
2 + B12U 2

2 + B13U2 + B14 = 0, (5.2)

where,

B11 = k1 (r1r2b1 − k3k5) ,

B12 = (r1r2b1 − k3k5) (d1 + k1σ − ρ) + k1(r2k3 − r1r2),
B13 = (r2k3 − r1r2)(d1 + k1σ − ρ) + σd1 (r1r2b1 − k3k5)+ µr2k2,

B14 = σ (d1 (r2k3 − r1r2)+ µr2k2) ,

or existence of U2, the discriminant must be positive.
iii) P∗

3 (E3,U3, I3, N3, V3), coexisting steady state, where immune-tumor-normal cells coexist with the non-zero
opulation after virus is injected.

Here, E3 =
(µ+ϕ I3)(σ+U3+I3)

(d1+k1U3)(σ+U3+I3)−ρU3
, I3 =

ρU3V3
(d2+k4 E3)(σ1+U3) , N3 =

r2−k5U3
r2

, V3 =
bd2 I3(σ1+U3)
ρ1U3+δ(σ1+U3) and

U3 =
1

r1b1

(
r1 − r1b1 I3 − k2 E3 − k3 N3 −

ρ1V3

σ1 + U3

)
,

r

C11U 2
3 + C12U3 + C13 = 0, (5.3)

where,

C11 = r1b1,

C12 = r1b1σ1 − r1 + r1b1 I3 + k2 E3 + k3 N3,

C13 = ρ1V3 − σ1 (r1 − r1b1 I3 − k2 E3 − k3 N3) ,

For existence of U3, the discriminant must be positive.
Since N = 0 biologically means the death of the patient, so we discard the steady states having N = 0.

5.3. Stability analysis of the steady states

We investigate the stability of these steady states by linearizing the model (5.1) about each of the steady states.
The Jacobian matrix of model (5.1) at an arbitrary point is given by

J1 =

⎛⎜⎜⎜⎜⎜⎜⎝
Q11

σρE
(σ+(U+I ))2

− k1 E ϕ 0 0

−k2U Q12 −r1b1U −k3U −ρ1U
(σ1+U )

−k4 I σ1ρ1V
(σ1+U )2

Q13 0 ρ1U
(σ1+U )

0 −k5 N 0 Q14 0
0 −σ1ρ1V

(σ1+U )2
bd2 0 Q15

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where, Q11 =
ρ(U+I )
σ+(U+I ) − d1 − k1U, Q12 = r1 − 2r1b1U − r1b1 I −

σ1ρ1V
(σ1+U )2

− k2 E − k3 N , Q13 = −d2 − k4 E, Q14 =

2 − 2r2 N − k5U, Q15 = −δ −
ρ1U

(σ1+U ) .
As shown above, the model (5.1) has three steady states. Below, we investigate the stability of each of these

states.
(i) P∗

1 ( µd1
, 0, 0, 1, 0), uninfected tumor, infected tumor and virus free state: The eigen values at P∗

1 state are derived
from the Jacobian matrix J1, which are found to be

λ1 = −d1, λ2 = r1 − k2.
µ

d1
− k3, λ3 = −d2 − k4.

µ

d1
, λ4 = −r2 and λ5 = −δ.

o, the equilibrium is locally asymptotically stable if r − k . µ − k < 0, otherwise unstable.
1 2 d1 3
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(ii) P∗

2 (E2,U2, 0, N2, 0), infected tumor cells and virus-free state:
The characteristics equation at steady state P∗

2 is((
Q′

13 − λ
) (

Q′

15 − λ
)
−

ρ1U2

(σ1 + U2)
bd2

) ((
Q′

11 − λ
) (((

Q′

12 − λ
) (

Q′

14 − λ
)
+ k3k5 N2U2

))
− k2U2

(
σρE2

(σ + U2)
2 − k1 E2

) (
Q′

14 − λ
))

= 0
(5.4)

where Q′

11 =
ρU2
σ+U2

−d1−k1U2,
′

12 = r1−2r1b1U2−k2 E2−k3 N2, Q′

13 = −d2−k4 E2, Q′

14 = r2−2r2 N2−k5U2, Q′

15 =

δ −
ρ1U2

(σ1+U2) .
In this state, it is difficult to calculate the eigen values from Eq. (5.4) because this equation is non-linear and

nvolving many terms. So, we substitute the parameter values in Table 1.
Using parameter values from Table 1 and considering b = 3.49 (depends on other parameter values in

Table 1) in Eq. (5.2), we get three steady states as (0.715, 0.067, 0, 0.952, 0), (−0.182, 0.573, 0, 0.591, 0) and
(−5.251, 3.430, 0,−1.450, 0). Out of the three, only biologically valid steady state is P∗

2 (0.715, 0.067, 0, 0.952, 0).
From the characteristics Eq. (5.4), we get the eigenvalues for P∗

2 to be

λ1 = −0.07009, λ2 = −0.333, λ3 = −0.141 − 0.128i, λ4 = −0.141 + 0.128i and λ5 = 0.114.

his shows that the virus-free state P∗

2 is unstable. Physically it means that without any treatment tumor cells cannot
e eradicated.
iii) P∗

3 (E3,U3, I3, N3, V3), coexisting steady state:
In steady state P∗

3 , it is difficult to calculate the characteristics equation and involving many terms. So, we
ubstitute the parameter values in Table 1.

Using parameter values from Table 1 and considering b = 3.49 in Eq. (5.3), we get, five steady states, which
re found to be (0.283, 0.001, 0.007, 0.999, 0.08) , (0.466, 0.011, 0.028, 0.992, 0.045), (0.496,−1.56, 1.427, 2.11,

0.108) , (0.503,−0.05,−5.009, 1.036, 1.313), (0.496, 1.321,−0.858, 0.056,−0.086).
Out of the five, two steady states are biologically feasible, which are

P∗

3 (0.283, 0.001, 0.007, 0.999, 0.08) and P∗

4 (0.466, 0.011, 0.028, 0.992, 0.045) .

In steady state P∗

3 , it is difficult to calculate the characteristics equation and involving many terms. So, we substitute
the parameter values in Table 1.
(i) The characteristic equation at steady state P∗

3 is

λ5
+ 0.165λ4

− 0.072λ3
− 0.003λ2

+ 0.000011λ− 0.000000081 = 0,

From which the eigen values are found to be λ1 = −0.35, λ2 = −0.043, λ3 = 0.22, λ4 = 0.004 − 0.015i and
5 = 0.22. The eigenvalues show that the co-existing steady state P∗

3 is unstable.
ii) The characteristic equation at steady state P∗

4 is

λ5
+ 0.128λ4

− 0.094λ3
− 0.005λ2

+ 0.00017λ− 0.0000041 = 0,

rom which the eigen values are found to be λ1 = −0.349, λ2 = −0.082, λ3 = 0.276, λ4 = 0.014 − 0.018i and
5 = 0.014 + 0.018i . The nature of the eigen values show that the co-existing steady state P∗

4 is unstable.
From our above discussion it is seen that out of the above steady states, only P∗

1 is stable and the remaining are
nstable. Further, we have shown above that P∗

1 is locally asymptotically stable. We investigated about the global
tability of P∗

1 and on the basis of this investigation we forward the following theorem.

heorem 5.1. The healthy steady state P∗

1 is globally asymptotically stable if the steady state P∗

1 is locally stable
nd the following conditions

k2 E1 + k3 N1 > r1, E =
µ

d1
,U + I =

1
b1
, V =

b
δ
,

are satisfied.

Proof of Theorem 5.1 can be found in Appendix B.
Next, we verify our results numerically.
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Fig. 4. Time-series solutions of the model (5.1) with initial conditions E (0) = 0.2,U (0) = 0.05, I (0) = 0.1, N (0) = 0.6, V (0) = 0.001.
igures (a), (b), (c), and (d) represent the density of immune cells, uninfected tumor cells, infected tumor cells, and normal cells, respectively,
or different virus burst sizes, and figure (e) represents the different virus burst sizes.

Fig. 4 shows an evaluation of the model with virotherapy alone. From figures (b) and (c) It is seen that in this
ode of therapy, tumor can be eradicated with a high dosage of virus burst size where b = 3.5. The time-series

olutions of the model (5.1) shows that an increase in the virus burst size reduces the uninfected tumor density
nd increases the density of immune cells. Further, it is seen that both uninfected and infected tumor cells get
educed to zero in quick succession which is biologically feasible. Another advantage of this mode of treatment
s observed to be reduction in tumor size without much loss of normal cells. But this treatment method takes a
rolonged (excessive) period to reduce the tumor cells.
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6. Dynamic behavior of the combined chemo-virotherapy model

To analyze the effect of the combined treatment of chemotherapy and virotherapy, we now proceed to study the
hole model which consist of Eqs. (2.1) to (2.6).

d E
dt

= µ+
ρ (U + I ) E
σ + (U + I )

− d1 E − k1 EU − a1 EC + ϕ I,

dU
dt

= r1U (1 − b1 (U + I ))−
ρ1U V
σ1 + U

− k2 EU − k3 NU − a2UC,

d I
dt

=
ρ1U V
σ1 + U

− d2 I − k4 I E − a3 I C,

d N
dt

= r2 N (1 − N )− k5U N − a4 NC, (6.1)

dV
dt

= bd2 I −
ρ1U V
σ1 + U

− δV,

dC
dt

= u − d3C,

with initial conditions: E (0) = E0,U (0) = U0, I (0) = I0, N (0) = N0, V (0) = V0,C (0) = C0 where each initial
alue is positive.

.1. Analysis of the model

In this section, we study about the existence of the steady states related with the model (6.1) and their nature of
tabilities. The motivation for doing so is as stated in earlier sections.

.2. Existence of steady states

Following the method adopted earlier the steady states are found to be
i) P∗∗

1 (E1, 0, 0, N 1, 0,C1), tumor cells and virus free steady state, where infected and uninfected tumor cells
population are zero. Here, E1 =

µ

d1+a1C1
, N 1 =

r1−a4C1
r1

,C1 =
u
d3

= C∗.
(ii) P∗∗

2 (E2,U 2, 0, N 2, 0,C2), infected tumor cells and virus free steady state.
Here, E2 =

µ(σ+U2)
(d1+k1U2+a1C∗)(σ+U2)−ρU2

, N 2 =
r2−k5U2−a4C∗

r2
,C2 =

u
d3

= C∗ and

U 2 =
1

r1b1

(
r1 − k2 E2 − k3 N 2 − a2C∗

)
=

1
b1

−
k2

r1b1

(
µ(σ + U 2)

(d1 + k1U 2 + a1C∗)(σ + U 2) − ρU 2

)
−

k3

r1b1

(
r2 − k5U 2 − a4C∗

r2

)
−

a2C∗

r1b1
,

r

D11U
3
2 + D12U

2
2 + D13U 2 + D14 = 0, (6.2)

where,

D11 = k1 (r1r2b1 − k3k5)

D12 = (r1r2b1 − k3k5) (d1 + k1σ + a1C∗
− ρ) + k1(r2k3 − r1r2 + a2r2C∗

− k3a4C∗)
D13 = (r2k3 − r1r2 + a2r2C∗

− k3a4C∗)(d1 + k1σ + a1C∗
− ρ) + σ (r1r2b1 − k3k5) (d1 + a1C∗) + µr2k2

D14 = σ (r2k3 − r1r2 + a2r2C∗
− k3a4C∗)(d1 + a1C∗) + µr2k2σ

or the existence of U 2, discriminant must be positive.
iii) P∗∗

3 (E3, 0, I 3, N 3, V 3,C3), uninfected tumor free steady state:
here, E3 =

−d2−a3C3
k4

, N 3 =
r2−a4C3

r2
, V 3 =

bd2 I 3
δ
,C3 = C∗ and

µ+
ρ I 3 E3

− d1 E3 − a1 E3C∗
+ ϕ I 3 = 0,
σ + I 3
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or

E11 I
2
3 + E12 I 3 + E13 = 0,

where,

E11 = ϕ,

E12 = ρE3 + µ− d1 E3 − a1 E3C∗
+ ϕσ,

E13 = (µ− d1 E3 − a1 E3C∗)σ,

or existence of I 3, discriminant must be positive.
(iii) P∗∗

3 (E3, 0, I 3, N 3, V 3,C3), uninfected tumor free steady state:
where, E3 =

−d2−a3C3
k4

, N 3 =
r2−a4C3

r2
, V 3 =

bd2 I 3
δ
,C3 = C∗ and

µ+
ρ I 3 E3

σ + I 3
− d1 E3 − a1 E3C∗

+ ϕ I 3 = 0,

r

E11 I
2
3 + E12 I 3 + E13 = 0, (6.3)

where,

E11 = ϕ,

E12 = ρE3 + µ− d1 E3 − a1 E3C∗
+ ϕσ,

E13 = (µ− d1 E3 − a1 E3C∗)σ,

or existence of I 3, discriminant must be positive.
(viii) P∗∗

4 (E4,U 4, I 4, N 4, V 4,C4), co-existing steady state:

E4 =

(
µ+ ϕ I 4

) (
σ + U 4 + I 4

)
(d1 + k1U 4 + a1C4)

(
σ + U 4 + I 4

)
− ρ(U 4 + I 4)

, I 4 =
ρ1U 4V 4(

σ1 + U 4
) (

d2 + k4 E4 + a3C4
) ,

N 4 =
r2 − k5U 4 − a4C4

r2
,

V 4 =
bd2 I 4(σ1 + U 4)

ρU 4 + δ(σ1 + U 4)
,C4 = C∗ and

U 4 =
1

r1b1

(
r1 − r1b1 I 4 −

ρ1V 4

σ1 + U 4
− k2 E4 − k3 N 4 − a2C∗

)
,

r

F11U
2
4 + F12U 4 + F13 = 0, (6.4)

where,

F11 = r1b1,

F12 = r1b1σ1 − r1 + r1b1 I 4 + k2 E4 + k3 N 4 + a2C∗,

F13 = ρ1V 4 − σ1
(
r1 − r1b1 I 4 − k2 E4 − k3 N 4 − a2C∗

)
,

or existence of U 4, the discriminant must be positive.
Since N = 0 biologically means the death of the patient, so we discard the steady states having N = 0.
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6.3. Stability analysis of the steady states

We investigate the stability of these steady states by linearizing the model (6.1) about each of the steady states.
he Jacobian matrix of the model (6.1) at an arbitrary point is given by

J2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R11 R16 ϕ 0 0 −a1 E
−k2U R12 −r1b1U −k3U −ρ1U

(σ1+U ) −a2U
−k4 I σ1ρ1V

(σ1+U )2
R13 0 ρ1U

(σ1+U ) −a3 I
0 −k5 N 0 R14 0 −a4 N
0 −σ1ρ1V

(σ1+U )2
bd2 0 R15 0

0 0 0 0 0 −d3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where, R11 =
ρ(U+I )
σ+(U+I ) − d1 − k1U − a1C, R12 = r1 − 2r1b1U − r1b1 I −

σ1ρ1V
(σ1+U )2

− k2 E − k3 N − a2C, R13 =

d2 − k4 E − a3C, R14 = r2 − 2r2 N − k5U − a4C, R15 = −δ −
ρ1U

(σ1+U ) , R16 =
σρE

(σ+(U+I ))2
− k1 E . As found above,

the model (6.1) has four steady states. Now, we investigate the nature of stability of each of those one by one.
(i) P∗∗

1 (E1, 0, 0, N 1, 0,C1), tumor and virus free steady state: The eigen values of the Jacobian matrix at P∗∗

1 are
found as

λ1 = −d1 − a1C1 < 0, λ2 = r1 − k2.
µ

d1 + a1C1
− k3.

r2 − a4C1

r2
− a2C1,

λ3 = −d2 − k4.
µ

d1 + a1C1
− a3C1 < 0, λ4 = −r2 + a4C1,

λ5 = −δ and λ6 = −d3 < 0.

o, using the standard relationship between eigenvalues and nature of stability, it can be concluded that P∗∗

1 is
ocally asymptotically stable if

1. u <
r2d3

a4
and (6.5)

2.
{
r2
(
r1 − a2C2

)
− k3

(
r2 − a4C2

)} (
d1 + a1C2

)
< µk2r2, otherwise unstable. (6.6)

e consider the chemotherapy dose u in stable range to bring the model to the at steady state P∗∗

1 .
ii) P∗∗

2 (E2,U 2, 0, N 2, 0,C2), infected tumor and virus free steady state: Here, one eigen value is λ = −d3 < 0
and the other eigen values are derived from the Jacobian matrix J2.

The characteristic equation at steady state P∗∗

2 is

(
R′

11 − λ
) ((

R′

12 − λ
) (

R′

14 − λ
) (

(R′

13 − λ)(R′

15 − λ) −
ρ1U 2(
σ1 + U 2

)bd2

)
− k3k5U 2 N 2(R′

13 − λ)(R′

15 − λ)

)

+ R′

16

(
k2U 2

(
R′

14 − λ
) ((

R′

13 − λ
) (

R′

15 − λ
)
−

ρ1U 2(
σ1 + U 2

)bd2

))
= 0

(6.7)

here,

R′

11 =
ρU 2

σ + U 2
− d1 − k1U 2 − a1C2, R′

12 = r1 − 2r1b1U 2 − k2 E2 − k3 N 2 − a2C2,
′

13 = −d2 − k4 E2 − a3C2,

R′

14 = r2 − 2r2 N 2 − k5U 2 − a4C2, R′

15 = −δ −
ρ1U 2(
σ1 + U 2

) , R′

16 =
σρE2(
σ + U 2

)2 − k1 E2.

It is difficult to calculate the eigen values from Eq. (6.7) because this equation is non-linear and involving many
terms. So, we substitute the parameter values in Table 1.

Case1 with u = 0.0260123 (in stable range from conditions (6.5) and (6.6)).
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Using parameter values from Table 1 and considering u = 0.0260123 in Eq. (6.2), we get three steady states as
(0.164,−0.00000048, 0, 0.703, 0, 0.52) , (−0.49, 0.369, 0, 0.439, 0, 0.52) and (−4.808, 2.803, 0,−1.3, 0, 0.52).

So, no biologically valid steady state exists in this case.

Case2: Consider u = 0.025 (in unstable range from conditions (6.5) and (6.6)).
Using parameter values from Table 1 and considering u = 0.025 in Eq. (6.2), we get three steady states, which

are (0.177, 0.00076, 0, 0.709, 0, 0.5) , (−0.467, 0.371, 0, 0.449, 0, 0.5) and (−4.827, 2.829, 0,−1.306, 0, 0.5).
Out of the three, only one is biologically feasible, which is P∗∗

2 (0.179, 0.00076, 0, 0.709, 0, 0.5).
The eigen values related to this point are

λ1 = −0.05, λ2 = −0.246462, λ3 = −0.297935, λ4 = −0.07, λ5 = −0.002 and λ6 = 0.004.

This shows that the steady state P∗∗

2 at (0.177, 0.00076, 0, 0.709, 0, 0.5) is unstable.
Biologically, it is clear from this that immune system fails to remove tumor cells without a sufficient amount of

drug dose.
(iii) P∗∗

3 (E3, 0, I 3, N 3, V 3,C3), uninfected tumor free steady state: Here, eigen values are λ1 = r1 − r1b1 I 3 −

σ1ρ1V 3
σ1

− k2 E3 − k3 N 3 − a2C3, λ2 = r2 − 2r2 N 3 − a4C3, λ3 = −δ, λ4 = −d3 < 0 and the other eigen values are
erived from the Jacobian matrix J2(P∗∗

3 ).

λ2
+

(
−

ρ I 3

σ + I 3
+ d1 + a1C3 + d2 + k4 E3 + a3C3

)
λ+

(
ρ I 3

σ + I 3
− d1 − a1C3

) (
−d2 − k4 E3 − a3C3

)
+ ϕk4 I 3 = 0

or

λ2
+ X22λ+ Y22 = 0 (6.8)

By Routh–Hurwitz criteria, the characteristic Eq. (6.8) has negative roots if X22 > 0 and Y22 > 0.
So, using the standard relationship between eigenvalues and nature of stability, it can be concluded that P∗∗

3 is
locally asymptotically stable if

λ1 < 0 = r1 − r1b1 I 3 −
σ1ρ1V 3

σ1
− k2 E3 − k3 N 3 − a2C3 < 0, λ2 < 0 = r2 − 2r2 N 3 − a4C3 < 0,

d1 + a1C3 + d2 + k4 E3 + a3C3 >
ρ I 3

σ + I 3
and

(
ρ I 3

σ + I 3
− d1 − a1C3

) (
−d2 − k4 E3 − a3C3

)
+ ϕk4 I 3 > 0.

ase1: Consider u = 0.0260123 (in stable range from conditions (6.5) and (6.6)).

Using parameter values from Table 1 and considering u = 0.0260123 in Eq. (6.3), steady states are found
to be (−1.24049, 0, 0.227656, 0.702716, 7.945180, 0.520246) and (−1.24049, 0, 7.505558, 0.702716, 261.94399,
0.520246). Thus, no biologically valid steady state exists in this case.

Case2: Consider u = 0.025 (in unstable range from conditions (6.5) and (6.6)).
Using parameter values from Table 1 and considering u = 0.025 in Eq. (6.3), steady states are found to be

(−1.2, 0, 0.225443, 0.714286, 7.867970, 0.5) and (−1.2, 0, 7.274557, 0.714286, 253.88203, 0.5).

So, in this case also no biologically valid steady state exists.
(viii) P∗∗

4 (E4,U 4, I 4, N 4, V 4,C4), co-existing steady state: Here, one eigen value is λ = −d3 < 0 and the other
eigen values are derived from the Jacobian matrix J2.

In steady state P∗∗

4 , it is difficult to calculate the characteristics equation and involving many terms. So, we
substitute the parameter values in Table 1.
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Case1: Consider u = 0.0260123 (in unstable range from conditions (6.5) and (6.6)).
Using parameter values from Table 1 and considering u = 0.0260123 in Eq. (6.4), steady states are found to be

−0.543, −0.389, 0.716, 0.98, 0.03, 0.52), (−0.538, −0.06, 2.573, 0.746, −0.521, 0.52),
(0.163, −0.001, −0.000013, 0.00045, 0.703, 0.52), (−0.546, 0.241, 0.103,0.53, 0.0164, 0.52), (−0.544, 6.301,

4.615, −3.798, −0.414, 0.52).
So, no biologically valid steady state exists.

ase2: Consider u = 0.025 (in unstable range from conditions (6.5) and (6.6)).
Using parameter values from Table 1 and considering u = 0.025 in Eq. (6.4), steady states are found to be
(−0.503, −0.307, 0.662, 0.934, 0.02, 0.5), (−0.498, −0.062, 2.29, 0.758, −0.452, 0.5), (0.165, −0.001,

0.00012, 0.715, 0.004, 0.5), (−0.504, 8.66, −6.48, −5.471, −0.577, 0.5), (−0.505, 0.279, 0.075, 0.515, 0.011,
.5).

So, no biologically valid steady state exists in this case also.
From our above discussion it is seen that out of the above steady states, only P∗∗

1 is stable and the remaining are
nstable. Further, we have shown above that P∗∗

1 is locally asymptotically stable. We investigated about the global
tability of P∗∗

1 and on the basis of this investigation we forward the following theorem.

heorem 6.1. The healthy steady state P∗∗

1 is globally asymptotically stable if the steady state P∗∗

1 is locally
symptotically stable and the conditions

k2 E1 + k3 N 1 + a2C1 > r1, E =
µ

d1
,U + I =

1
b1
, V =

b
δ
,C =

u
d3
,

re satisfied.

Proof of Theorem 6.1 can be found in Appendix C.
Now, we verify our result numerically.
Comparing with the results of Figs. 3(b) and 4(b), where chemotherapy and virotherapy treatment methods were

sed alone respectively, it can be seen from Figs. 5(c) and 5(d) that the uninfected tumor cell population can be
radicated using less amount of chemotherapy in a shorter period when combined chemo-virotherapy mode of
reatment is adopted. Fig. 3(b) shows that in absence of virotherapy (b = 0), chemotherapeutic drug dose u = 0.02
s insufficient to overcome tumor cells of growth rate r1 = 0.45. But, when combined mode of treatment of
oth chemo-virotherapy is adopted, same amount of chemotherapy drug administration (u = 0.02) is sufficient
o eradicate the tumor cells at a much higher virus burst size b = 3.4 and r1 = 0.45 as seen from Fig. 5(d). Also,
rom Fig. 4(b) it is seen that the virus therapy alone at virus burst size b = 3 is not sufficient to overcome tumor
ells of growth rate r1 = 0.45. But, when the same virus burst size (b = 3) is subjected to combined therapy with
hemotherapy at drug dose u = 0.025, it becomes sufficient to eradicate the tumor cells, where tumor cells growth
ate r1 = 0.45 as seen from Fig. 5(c).

Thus, combined treatment method can eliminate tumor with lower dose of drug administration rate and virus
urst size, which cannot be achieved when either virotherapy or chemotherapy alone is used as mode of treatment.

Figs. 3(b) and 3(c) show that though chemotherapeutic drug dose u = 0.027 led to reduction in the burden of
umor cells, but it damaged immune-normal cells populations also, which can put the patient to other health hazards.
n contrast, in combined mode of treatment of both chemo-virotherapy, it requires lesser dose of chemotherapy to
radicate the tumor cells, thus reducing the side effect on immune-normal cells. This observation can also be seen
n Fig. 5(a), 5(b), 5(g) and 5(h). So, we can conclude that the incorporation of combined therapy to eradicate the
umor cells is more effective as it makes the patients’ body tumor-free without putting the patients’ health at risk.

Figs. 5(e) and 5(f) further show that both infected and uninfected tumor cells reduces almost simultaneously and
t is biologically feasible.

Thus, these simulation results show that the cancer treatment with chemo-virotherapy is more effective than
ither chemotherapy or virotherapy alone. These results also show that the combined treatment method would take
shorter period to clear all tumor cells from the body.
In the next section, we will analyze the optimal control problem to explicitly determine the optimal combined

mount of virus and chemotherapeutic drug dosage necessary for tumor eradication.
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Fig. 5. Time-series solutions of the model (6.1) with the initial conditions for these simulations are: E(0) = 0.2,U (0) = 0.05, I (0) =

.1, N (0) = 0.6, V (0) = 0.001,C(0) = 0.001. Figures (a), (c), (e) and (g) represents the density of immune cells, uninfected tumor cells,
nfected tumor cells, and normal cells, respectively, for different chemo-drug doses and for virus burst size, b = 3. Figures (b), (d), (f), and

(h) represents the density of immune cells, uninfected tumor cells, infected tumor cells, and normal cells, respectively, for different virus
burst sizes and for chemo-drug dose, u = 0.02. Figure (i) represents the different rate of chemo-drug doses with virus burst size, b = 3.
Figure (j) represents the different rate of virus burst size with chemo-drug dose, u = 0.02.

7. Optimal control

This section is dedicated toward the study of the model under investigation when we administer chemo-
virotherapy treatment over a fixed time. From a biomedical perspective, we use the concept of optimal control

in the model under consideration. As higher doses of chemotherapy cause many side effects in the patients, so, it
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is utmost important to keep an eye on how this amount can be minimized. At the same time, we must minimize it
in a way so that the tumor can be eradicated because our investigation has already revealed that only virus therapy
cannot eradicate tumor. Under such a consideration, we propose and analyze an optimal control problem applied to
the chemo-virotherapy model to determine the optimal combination of chemotherapy and virotherapy for controlling
the tumor. We set the control variables τ and u respectively to be the supply of viruses and chemotherapy from
xternal sources of drugs, which is incorporated into the model’s equations (2.5) and (2.6) to obtain the following
ontrol model which is time dependent. For model tractability, we ignore the immune-normal cell responses.

dU
dt

= r1U (1 − b1 (U + I ))−
ρ1U V
σ1 + U

− a2UC,

d I
dt

=
ρ1U V
σ1 + U

− d2 I − a3 I C, (7.1)

dV
dt

= bd2 I −
ρ1U V
σ1 + U

− δV + τ (t),

dC
dt

= u(t) − d3C,

Initial conditions for the model are set as:

U (0) = U0, I (0) = I0, V (0) = V0,C (0) = C0, (7.2)

The objective function which is to be minimized is defined as:

Ω (τ, u) =

∫ t f

0
[U (t)+ I (t)− ε1τ

2(t) + ε2u2(t)]dt, (7.3)

The constants ε1, ε2 represent the weight factors of the respective terms. Those are used for balancing the size of
he terms. The optimal combination of control variables τ and u will be adequate to minimize the uninfected and
nfected tumor density (U (t) & I (t)) together and also negative side effects over a fixed time. The first two terms
f the integrand function represent the total number of tumor cells and the third and fourth terms of the integrand
eflect the effectiveness of the applied drugs on the body. Here, we use an optimal control problem relative to the
odel to maximize the viro-therapeutic effect to boost up the immune system and reduce the duration of recovery

ime of the patient and minimize chemotherapeutic drug administration to reduce the side effects.
Here, we establish an optimal control τ ∗, u∗ such that

Ω
(
τ ∗, u∗

)
= min {Ω (τ, u) : τ, u ∈ ∆} , (7.4)

here ∆ =
{
τ, u : measurable, 0 ≤ τ, u ≤ 1, t ∈

[
0, t f

]}
is the admissible control set.

.1. The existence of optimal control

In this sub section, we discuss about the existence of an optimal control of our model (7.1).
The property of super solutions U , I , V , and C of the model (7.1) is that trajectories given by

dU
dt

= r1U ,

d I
dt

= ρ1V − d2 I , (7.5)

dV
dt

= bd2 I − δV + τ,

dC
dt

= u − d3C,

re bounded. In vector form, we can express the above model (7.5) as:⎛⎜⎜⎝
U
I
V

⎞⎟⎟⎠
′

≤

⎛⎜⎜⎝
r1 0
0 −d2

0 0
ρ1 0

0 bd2 −δ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

U
I
V

⎞⎟⎟⎠+

⎛⎜⎜⎝
0
0
τ

⎞⎟⎟⎠

C 0 0 0 −d3 C u
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Since this is a linear model with bounded coefficients and the time frame is limited, so, we can conclude that
he solutions U , I , V and C of the above model are bounded. Using the theorem proposed by Lukes [10,17], we

found that the admissible control class and the corresponding state equations with assumed initial conditions are
non-empty. Also, by definition of the set ∆, it is clear that the control set ∆ is convex and closed. Since the state
solutions are bounded, hence, the right-hand sides of the state model (7.1) are continuous and bounded by a sum
of the bounded controls and the states.

Now, we show the convexity of integrand of Ω (τ, u) on ∆ and that it is bounded below by τ1(u2
− τ 2) − τ2

ith τ1, τ2 > 0.
Let p = (p1, p2) , q = (q1, q2) be distinct elements of Ω and 0 ≤ Y ≤ 1. We have to show that

Ω (p1Y + (1 − Y ) p2, q1Y + (1 − Y ) q2) ≤ (1 − Y )Ω (p1, q1)+ YΩ (p2, q2) ,

here, Ω (τ, u) = U (t)+ I (t)− ε1τ
2(t) + ε2u2(t).

To establish it we proceed as follows:

Ω (p1Y + (1 − Y ) q1, p2Y + (1 − Y ) q2)− (1 − Y )Ω (p1, p2)+ YΩ (q1, q2)

= U (t)+ I (t)− ε1 (p1Y + (1 − Y ) q1)
2
+ ε2 (p2Y + (1 − Y ) q2)

2
− Y

(
U (t)+ I (t)− ε1 p2

1 + ε2 p2
2

)
− (1 − Y )

(
U (t)+ I (t)− ε1q2

1 + ε2q2
2

)
= U (t)+ I (t)− ε1

(
p2

1Y 2
+ 2p1q1Y (1 − Y )+ (1 − Y )2 q2

1

)
+ ε2

(
p2

2Y 2
+ 2p2q2Y (1 − Y )+ (1 − Y )2 q2

2

)
− Y

(
U (t)+ I (t)− ε1 p2

1 + ε2 p2
2

)
− (U (t)+ I (t)− ε1q2

1 + ε2q2
2 ) + Y

(
U (t)+ I (t)− ε1q2

1 + ε2q2
2

)
= −ε1 p2

1Y 2
− 2ε1 p1q1Y (1 − Y )− ε1(1 − Y )2q2

1 + ε2 p2
2Y 2

+ 2ε2 p2q2Y (1 − Y )

+ ε2(1 − Y )2q2
2 + ε1 p2

1Y − ε2 p2
2Y + ε1q2

1 − ε2q2
2 − ε1q2

1 Y + ε2q2
2 Y

= −ε1 p2
1Y 2

− 2ε1 p1q1Y + 2ε1 p1q1Y 2
− ε1

(
1 − 2Y + Y 2) q2

1 + ε2 p2
2Y 2

+ 2ε2 p2q2Y − 2ε2 p2q2Y 2

+ ε2
(
1 − 2Y + Y 2) q2

2 + ε1 p2
1Y − ε2 p2

2Y + ε1q2
1 − ε2q2

2 − ε1q2
1 Y + ε2q2

2 Y

= −ε1 p2
1Y 2

+ 2ε1 p1q1Y 2
− ε1q2

1 Y 2
+ ε1 p2

1Y − 2ε1 p1q1Y + ε1q2
1 Y + ε2 p2

2Y 2
− 2ε2 p2q2Y 2

+ ε2q2
2 Y 2

− ε2q2
2 Y + 2ε2 p2q2Y − ε2 p2

2Y

= −(ε2 − ε1) (p2 − q2)
2 Y (1 − Y ) [Since (Y − 1) ≤ 0 and if ε2 − ε1 ≥ 0],

nd

U (t)+ I (t)− ε1τ
2 (t)+ ε2u2 (t) ≥ −ε1τ

2 (t)+ ε2u2 (t) ≥ τ1
(
u2 (t)− τ 2 (t)

)
≥ τ1

(
u2 (t)− τ 2 (t)

)
− τ2,

his shows that τ1
(
u2 (t)− τ 2 (t)

)
− τ2 is a lower bound of Ω (τ, µ).

This verifies that there exists an optimal control τ ∗, u∗ for which Ω (τ ∗, u∗) = min {Ω (τ, u) : τ, u ∈ ∆}. From
bove analysis and conclusion, we state the following theorem.

heorem 7.1. Subject to the model (7.1), with initial conditions U (0) = U0, I (0) = I0, V (0) = V0, and
(0) = C0, the objective functional

Ω (τ, u) =

∫ t f

0

[
U (t)+ I (t)− ε1τ

2 (t)+ ε2u2 (t)
]

dt,

dmits an optimal control τ ∗, u∗ such that Ω (τ ∗, u∗) = min {Ω (τ, u) : τ, u ∈ ∆}, where ∆ = {(τ, u) : τ, u
are piecewise continuous, 0 ≤ τ, u ≤ 1, t ∈ [0, t f ]}.
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7.2. Characterization of the optimal control

For applying the Pontryagin maximum principle [32], we introduced the four co-state variables ξi (i = 1, 2, 3, 4).
he Hamiltonian function is given by

h = U + I − ε1τ
2
+ ε2u2

+ ξ1U̇ + ξ2 İ + ξ3V̇ + ξ4Ċ, (7.6)

ith substitution from (7.1) into (7.6) we get

h = U + I − ε1τ
2
+ ε2u2

+ ξ1

(
r1U (1 − b1 (U + I ))−

ρ1U V
σ1 + U

− a2UC
)

+ ξ2

(
ρ1U V
σ1 + U

− d2 I − a3 I C
)

+ ξ3

(
bd2 I −

ρ1U V
σ1 + U

− δV + τ

)
+ ξ4 (u − d3C) ,

The Hamiltonian equations are:

ξ̇1 = −
∂h
∂U

, ξ̇2 = −
∂h
∂ I
, ξ̇3 = −

∂h
∂V

, ξ̇4 = −
∂h
∂C

,

where, ξi (t) , i = 1, 2, 3, 4 are the adjoint functions to be determined suitably.
The form of the adjoint equations and transversality conditions are standard results from Pontryagin’s maximum

principle [32]. The adjoint system can be written in the form:

ξ̇1 = −
∂h
∂U

= −1 − ξ1

(
r1 − 2r1b1U − r1b1 I −

ρ1σ1V
(σ1 + U )2 − a2C

)
− (ξ2 − ξ3)

ρ1σ1V
(σ1 + U )2 ,

ξ̇2 = −
∂h
∂ I

= −1 + ξ1r1b1U + ξ2(d2 + a3C) − ξ3bd2,

ξ̇3 = −
∂h
∂V

= (ξ1 − ξ2)
ρ1U
σ1 + U

+ ξ3

(
ρ1U
σ1 + U

+ δ

)
,

ξ̇4 = −
∂h
∂C

= ξ1a2U + ξ2a3 I + d3ξ4,

The transversality conditions are ξi
(
t f
)

= 0, for i = 1, 2, 3, 4.
The optimal control functions that must be used are determined from the conditions

∂h
∂τ

= 0 and
∂h
∂u

= 0.

ence, we get

τ ∗ (t) =
ξ3

2ε1
; τ = τ ∗(t) and u∗ (t) = −

ξ4

2ε2
; u = u∗(t), (7.7)

y using the bounds for the control τ ∗(t) and u∗(t) from (7.7), we get

τ ∗
=

⎧⎪⎪⎨⎪⎪⎩
ξ3

2ε1
, if 0 ≤

ξ3
2ε1

≤ 1

0, if ξ3
2ε1

≤ 0

1, if ξ3
2ε1

≥ 1

⎫⎪⎪⎬⎪⎪⎭ ,
nd

u∗
=

⎧⎪⎪⎨⎪⎪⎩
−

ξ4
2ε2
, if 0 ≤ −

ξ4
2ε2

≤ 1

0, if −
ξ4

2ε2
≤ 0

1, if −
ξ4

2ε2
≥ 1

⎫⎪⎪⎬⎪⎪⎭ ,
n compact notation, we have
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t

N

8

t
0
o
w
i
(
H
(

m
d
c
o
c
(
F
a
T

τ ∗
= min

{
max

{
0,
ξ3

2ε1

}
, 1
}
, (7.8)

and

u∗
= min

{
max

{
0,−

ξ4

2ε2

}
, 1
}
, (7.9)

From above analysis and conclusion, we state the following theorem.

Theorem 7.2. For optimal control τ ∗, u∗ and corresponding state variable solutions U ∗ (t) , I ∗(t), V ∗(t) and C∗(t)
hat minimize over ∆, there exist specific adjoint variables ξi (t) , i = 1, 2, 3, 4 satisfying the following model:

ξ̇1 = −1 − ξ1

(
r1 − 2r1b1U − r1b1 I −

ρ1σ1V
(σ1 + U )2 − a2C

)
− (ξ2 − ξ3)

ρ1σ1V
(σ1 + U )2 ,

ξ̇2 = −1 + ξ1r1b1U + ξ2(d2 + a3C) − ξ3bd2, (7.10)

ξ̇3 = (ξ1 − ξ2)
ρ1U
σ1 + U

+ ξ3

(
ρ1U
σ1 + U

+ δ

)
,

ξ̇4 = ξ1a2U + ξ2a3 I + d3ξ4,

subject to the transversality conditions ξi
(
t f
)

= 0, i = 1, 2, 3, 4.

In addition, the following properties hold:

τ ∗
= min

{
max

{
0,
ξ3

2ε1

}
, 1
}

and u∗
= min

{
max

{
0,−

ξ4

2ε2

}
, 1
}
.

ext, we proceed to numerically solve the proposed model and the optimal control problem.

. Numerical resolution

In this section, we discuss the numerical solutions of the optimal control model defined in (7.1). We consider
he parameter values from Table 1 and the initial conditions are taken as U (0) = 0.05, I (0) = 0.1, V (0) =

.001,C(0) = 0.001. Numerical solutions of the model equations are obtained using MATLAB while those for the
ptimal model are found using a fourth order Runge–Kutta iterative method. The optimal model (7.1) is associated
ith conditions (7.8) and (7.9) with separated boundary conditions at times t = 0 and t = t f . Forward method

s used to solve the optimal model (7.1) and the backward method is used to solve the respective adjoint system
7.10) for t f = 50. The variables associated with optimal models and in the objective functions have different scales.
ence, they are balanced by choosing weight constant ε1 = 2, ε2 = 5 and b = 3 in the objective function given in

7.3).
Fig. 7 shows that the combination treatment reduces the tumor density after a few days of treatment. The control

odel is subjected to a mixed control state constraint with an aim to reduce tumor cells, the amount of chemotherapy
rugs and treatment time. For this purpose, we applied the Pontryagin maximum principle, for retarded optimal
ontrol problem in the state variables. Numerical method was used to solve the appropriate control problem, based
n the degree of variance in the progression of the state model and the model of differentiation back into the
ombined model. Thus, we identified the best treatment method when reducing the objective function given by
7.3), i.e., reducing the total number of tumor cells and drug dose, u(t) and increasing the virus burst size, τ (t).
rom Figs. 6 and 7, we conclude that optimal control is more effective when tumor cells are reduced. Numerical
nalysis shows that the optimal control variables, τ (t) and u(t) decrease as the number of tumor cells decreases.
he theoretical characterization of the optimal control has also been agreed upon by numerical resolutions.
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Fig. 6. Figures (i) and (ii) represents the densities of uninfected, infected tumor cells with optimal control, and (iii) and (iv) represents the
optimally delivered drugs of virus therapy τ (t) and chemotherapy u(t).

Fig. 7. Time series plot of the total tumor cell population with control.

9. Conclusion

In this study, a modified mathematical model has been proposed in the form of a model of non-linear ordinary
differential equations to study the interaction between immune cells, tumor cells and normal cells. The results
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derived during the investigation reveal that depending on the parameters and the body’s initial immune-tumor-normal
cell population, it can be found whether the body’s immune system together with the normal cells will be able to
tackle the attack of the tumors. It is seen that at a larger tumor growth rate (r1 > 0.2), immune-normal cells fail to
overcome tumor cells without treatment and require medical intervention.

So, in the beginning, we investigated the effect of chemotherapy as a treatment measure. In this case, removal of
the tumor cells is possible with a high dose of chemotherapy. However, the drawback of this treatment method is
that a high dose of chemotherapy kills the patient’s normal cells and the tumor cells, making the patient susceptible
to many side effects and attacks from other opportunistic diseases. To get rid of this drawback, we investigated
the effect of virotherapy alone in the next step. However, in this case, stability analysis has shown that virotherapy
alone cannot eradicate tumor cells after the tumors attain a specific size.

In search of a better treatment method, we combined virotherapy with chemotherapy. Stability analysis, in this
case, shows that though virotherapy can overcome a small tumor; however, if the tumor is large, virotherapy should
be replaced by chemotherapy. A combination of virotherapy with chemotherapy can significantly reduce the dose
of chemotherapy required to eradicate the tumor population in comparison to treating with chemotherapy alone.
Besides, our data show that the combined therapy also improves the immune system. Thus, the combined therapy
mode provides much better results than the single therapy modes of either chemotherapy or virotherapy.

Further, optimal control theory has been applied to an optimal control problem relative to the model to maximize
the virotherapy effect to boost the immune system and reduce the duration of the patient’s recovery time and
minimize chemotherapeutic drug administration to reduce the side effects. Numerical results confirm that optimal
treatment strategies effectively achieve the goals mentioned earlier, which should be the component of any best
possible mode of treatment.

Appendix A. Global stability analysis of the healthy steady state P1
(

E∗

1, 0, N∗

1, C∗

1
)

in chemotherapy
treatment case

For the behavior of model (4.1) far away from the steady state P1(E∗

1 , 0, N ∗

1 ,C∗

1 ), we analyze the global stability
of P1 in this section.

Let us define the Lyapunov function of model (4.1) as

L1 (E, T, N ,C) =

(
E − E∗

1 − E∗

1 ln
E
E∗

1

)
+ T +

(
N − N ∗

1 − N ∗

1 ln
N
N ∗

1

)
+

(
C − C∗

1 − C∗

1 ln
N
C∗

1

)
Now, we differentiate w.r.t. time to obtain

d L1

dt
=

(
1 −

E∗

1

E

)
d E
dt

+
dT
dt

+

(
1 −

N ∗

1

N

)
d N
dt

+

(
1 −

C∗

1

C

)
dC
dt

=

(
1 −

E∗

1

E

)(
µ+

ρT E
σ + T

− d1 E − k1 ET − a1 EC
)

+ (r1T (1 − b1T )− k2 ET − k3 N T − a2T C)

+

(
1 −

N ∗

1

N

)
(r2 N (1 − N )− k5T N − a4 NC)+

(
1 −

C∗

1

C

)
(u − d3C)

=

(
1 −

E∗

1

E

)(
ρT E
σ + T

− d1
(
E − E∗

1

)
− k1 ET − a1 EC + a1 E∗

1 C∗

1

)
+ (r1T (1 − b1T )− k2 ET − k3 N T − a2T C)

(
1 −

N ∗

1

N

) (
r2
(
N − N ∗

1

)
− r2(N 2

− N ∗2
1 ) − k5T N − a4 NC + a4 N ∗

1 C∗

1

)
+

(
1 −

C∗

1

C

) (
−d3

(
C − C∗

1

))
=

(
ρT
σ + T

(
E − E∗

1

)
−

d1

E

(
E − E∗

1

)2
− k1T

(
E − E∗

1

)
− a1

(
C − C∗

1

) (
E − E∗

1

)
−

a1C∗

1

E

(
E − E∗

1

)2
)

− r1b1T 2
− k2T

(
E − E∗

1

)
− k3T (N − N ∗

1 ) − a2T
(
C − C∗

1

)
+

(
−r2

(
N − N ∗

1 1

)2
− k5T

(
N − N ∗

1

)
− a4

(
N − N ∗

1

) (
C − C∗

1

))
−

d3 (C − C∗
)2

+ T
(
r1 − k2 E∗

− k3 N ∗
− a2C∗

)

C 1 1 1 1
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f

a

A
t

g

= −Y T ′

1 M1Y1 − V T ′

1 Y1, (4.9)

where

Y T ′

1 =
[
E − E∗

1 , T, N − N ∗

1 ,C − C∗

1

]
, V T ′

2 =
[
0,−r1 + k2 E∗

1 + k3 N ∗

1 + a2C∗

1 , 0, 0
]
,

M1 =

⎛⎜⎜⎜⎜⎝
d1+a1C∗

1
E

1
2 (k1 + k2) 0 a1

2
1
2 (k1 + k2) r1b1

1
2 (k3 + k5) a2

2

0 1
2 (k3 + k5) r2

a4
2

a1
2

a2
2

a4
2

d3
C

⎞⎟⎟⎟⎟⎠ ,
The second component of the vector V2 in (4.9), we must have:

k2 E∗

1 + k3 N ∗

1 + a2C∗

1 > r1, (4.10)

where such a condition, namely (4.10) results in V T ′

2 Y2 > 0. Furthermore, by considering the values of parameters
rom Table 1 and if E = µ/d1, T = 1/b1, C = u/d3 then d L1/dt < 0.

Therefore, the healthy steady state P1 is globally asymptotically stable if the steady state P1 is locally stable,
and

k2 E∗

1 + k3 N ∗

1 + a2C∗

1 > r1, E =
µ

d1
, T =

1
b1
,C =

u
d3
,

re satisfied. So, the tumor free steady state is globally stable which means the total eradication of the tumor cells.

ppendix B. Global stability analysis of the healthy steady state P∗

1

(
µ

d1
, 0, 0, 1, 0

)
in virotherapy

reatment case

For the behavior of model (5.1) far away from the steady state P∗

1

(
E1 =

µ

d1
, 0, 0, N1 = 1, 0

)
, we analyze the

lobal stability of P∗

1 in this section. Let us define the Lyapunov function of model (5.1) as

L2 (E,U, I, N , V ) =

(
E − E1 − E1 ln

E
E1

)
+ U + I +

(
N − N1 − N1 ln

N
N1

)
+ V

Now, we differentiate w.r.t. time to obtain

d L2

dt
=

(
1 −

E1

E

)
d E
dt

+
dU
dt

+
d I
dt

+

(
1 −

N1

N

)
d N
dt

+
dV
dt

=

(
1 −

E1

E

)(
µ+

ρ (U + I ) E
σ + (U + I )

− d1 E − k1 EU + ϕ I
)

+

(
r1U (1 − b1 (U + I ))−

ρ1U V
σ1 + U

− k2 EU − k3 NU
)

+

(
ρ1U V
σ1 + U

− d2 I − k4 I E
)

+

(
1 −

N1

N

)
(r2 N (1 − N )− k5U N )+

(
bd2 I −

ρ1U V
σ1 + U

− δV
)

=

(
ρ (U + I )
σ + (U + I )

(E − E1)−
d1

E
(E − E1)

2
− k1U (E − E1) +

ϕ

E
I (E − E1)

)
+
(
r1U − r1b1U 2

− r1b1U I − k2 EU − k3 NU
)
+ (−d2 I − k4 I E)

+
(
−r2 (N − N1)

2
− k5U (N − N1)

)
+

(
bd2 I −

ρ1U V
σ1 + U

− δV
)

=

(
ρ (U + I )
σ + (U + I )

(E − E1)−
d1

E
(E − E1)

2
− k1U (E − E1) +

ϕ

E
I (E − E1)

)
− r1b1U 2

− r1b1U I − k2U (E − E1)− k3U (N − N1)− k4 I (E − E1)

+
(
−r2 (N − N1)

2
− k5U (N − N1)

)
+

bd2 I V
V

−
ρ1U V
σ1 + U

+ U r − k E − k N + I −d − k E − δV
( 1 2 1 3 1) ( 2 4 1)
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s

= −Y T ′

2 M2Y2 − V T ′

2 Y2, (5.5)

where

Y T ′

2 = [E − E1,U, I, N − N1, V ] , V T ′

2 = [0,−r1 + k2 E1 + k3 N1, d2 + k4 E1, 0, δ] ,

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
E

1
2

(
k1 + k2 −

ρ

σ+(U+I )

)
1
2

(
k4 −

ϕ

E

)
0 0

1
2

(
k1 + k2 −

ρ

σ+(U+I )

)
r1b1

r1b1
2

k3+k5
2

ρ1
2(σ1+U )

1
2

(
k4 −

ϕ

E

) r1b1
2 0 0 −

bd2
2V

0 k3+k5
2 0 r2 0

0 ρ1
2(σ1+U ) −

bd2
2V 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The second component of the vector V2 in (5.5), we must have:

k2 E1 + k3 N1 > r1, (5.6)

where such a condition, namely (5.6) results in V T ′

2 Y2 > 0. Furthermore, by considering the values of parameters
from Table 1 and if E = µ/d1, U + I = 1/b1, V = b/δ, then d L2/dt < 0.

Therefore, the healthy steady state P∗

1 is globally asymptotically stable if the steady state P∗

1 is locally stable,
and

k2 E1 + k3 N1 > r1, E =
µ

d1
,U + I =

1
b1
, V =

b
δ
,

are satisfied. In biological terms, it means that the tumor cells will be killed by virotherapy.

Appendix C. Global stability analysis of the healthy steady state P∗∗

1 in chemo-virotherapy treatment case

For the behavior of model (6.1) far away from the steady state P∗∗

1 (E1, 0, 0, N 1, 0,C1), we analyze the global
tability of P∗∗

1 in this section. Let us define the Lyapunov function of model (6.1) as

L3 (E,U, I, N , V,C) =

(
E − E1 − E1 ln

E

E1

)
+ U + I +

(
N − N 1 − N 1 ln

N

N 1

)
+ V

+

(
C − C1 − C1 ln

C

C1

)
.

Now, we differentiate w.r.t. time to obtain

d L3

dt
=

(
1 −

E1

E

)
d E
dt

+
dU
dt

+
d I
dt

+

(
1 −

N 1

N

)
d N
dt

+
dV
dt

+

(
1 −

C1

C

)
dC
dt

=

(
1 −

E1

E

)(
µ+

ρ (U + I ) E
σ + (U + I )

− d1 E − k1 EU − a1 EC + ϕ I
)

+

(
r1U (1 − b1 (U + I ))−

ρ1U V
σ1 + U

− k2 EU − k3 NU − a2UC
)

+

(
ρ1U V
σ1 + U

− d2 I − k4 I E − a3 I C
)

+

(
1 −

N 1

N

)
(r2 N (1 − N )− k5U N − a4 NC)

+

(
bd2 I −

ρ1U V
σ1 + U

− δV
)

+

(
1 −

C1

C

)
(u − d3C)

=

(
ρ (U + I )
σ + (U + I )

(
E − E1

)
−

d1
(
E − E1

)2

E
− k1U

(
E − E1

)
− a1

(
E − E1

) (
C − C1

)
−

a1C1 (E − E1
)2
E
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T

f

a

a

R

+
ϕ I
E

(
E − E1

))
+

(
r1U − r1b1U 2

− r1b1U I −
ρ1U V
σ1 + U

− k2 EU − k3 NU − a2UC
)

+

(
ρ1U V
σ1 + U

− d2 I − k4 I E − a3 I C
)

+

(
−r2

(
N − N 1

)2
− k5U

(
N − N 1

)
− a4

(
N − N 1

) (
C − C1

))
+

(
bd2 I −

ρ1U V
σ1 + U

− δV
)

−
d3
(
C − C1

)2

C

=

(
ρ (U + I )
σ + (U + I )

(
E − E1

)
−

d1

E

(
E − E1

)2
− k1U

(
E − E1

)
− a1

(
E − E1

) (
C − C1

)
+

a1C1

E

(
E − E1

) (
C − C1

)
+
ϕ

E
I
(
E − E1

))
+
(
−r1b1U 2

− r1b1U I − k2
(
E − E1

)
U

− k3
(
N − N 1

)
U − a2U

(
C − C1

))
+
(
−k4 I

(
E − E1

)
− a3 I

(
C − C1

))
+

(
−r2

(
N − N 1

)2
− k5U

(
N − N 1

)
− a4

(
N − N 1

) (
C − C1

))
+

(
bd2 I V

V
−
ρ1U V
σ1 + U

− δV
)

−
d3

C

(
C − C1

)2
+ U

(
r1 − k2 E1 − k3 N 1 − a2C1

)
− I (d2 + k4 E1 + a3C1)

= −Y T ′

3 M3Y3 − V T ′

3 Y3, (6.9)

where Y T ′

3 =
[
E − E1,U, I, N − N 1, V,C − C1

]
,

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1+a1C1
E

1
2

(
k1 + k2 −

ρ

σ+(U+I )

)
1
2

(
k4 −

ϕ

E −
ρ

σ+(U+I )

)
0 0 a1

2

1
2

(
k1 + k2 −

ρ

σ+(U+I )

)
r1b1

r1b1
2

k3+k5
2

ρ1
2(σ1+U )

a2
2

1
2

(
k4 −

ϕ

E −
ρ

σ+(U+I )

)
r1b1

2 0 0 −
bd2
2V

a3
2

0 k3+k5
2 0 r2 0 a4

2

0 ρ1
2(σ1+U ) −

bd2
2V 0 0 0

a1
2

a2
2

a3
2

a4
2 0 d3

C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V T
3 =

[
0,−r1 + k2 E1 + k3 N 1 + a2C1, d2 + k4 E1 + a3C1, 0, δ, 0

]
,

he second component of the vector V3 in (6.9), we must have:

k2 E1 + k3 N 1 + a2C1 > r1, (6.10)

where such a condition, namely (6.10) results in V T ′

3 Y3 > 0. Furthermore, by considering the values of parameters
rom Table 1 and if E = µ/d1, U + I = 1/b1, V = b/δ,C = u/d3, then d L3/dt < 0.

Therefore, the healthy steady state P∗∗

1 is globally asymptotically stable if the steady state P∗∗

1 is locally stable,
nd

k2 E1 + k3 N 1 + a2C1 > r1, E =
µ

d1
, U + I =

1
b1
, V =

b
δ
, C =

u
d3
,

re satisfied. In biological terms, it means that the tumor cells will be killed by chemo-virotherapy.
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