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A B S T R A C T

In this study, we propose a cancer-obesity-treatment model under the control parameters: IL-2 therapy, ACI
therapy, and nutritional diet. We analyze the proposed model and examine the existence and stability of the
equilibrium points for the cases: with and without treatment cases. Further, to reduce the number of cancer
cells and minimize the toxicity effect of the drug dose on other healthy cells, we consider an optimal control
problem over a finite time interval under the treatment control parameters. To understand the treatment effect,
we present simulation results for our proposed model considering different treatment strategies: no treatment;
only IL-2 therapy; a combination of IL-2 therapy and ACI therapy; and a combination of IL-2 therapy, ACI
therapy, and nutritional diet. Our results demonstrate that we could achieve an optimal treatment schedule
for cancer management by controlling all three treatment parameters.
1. Introduction

A tumor originates from any part of the body via abnormal growth
of a single cell. It has a spreading tendency. Depending upon its spread-
ing tendency, a tumor can be classified as benign (having no spreading
tendency and not cancerous), premalignant (having the potential to
become cancerous), and malignant (having rapid and uncontrolled
spreading tendency and cancerous) [1,2]. Worldwide, millions of peo-
ple die from cancer every year, and trends indicate that millions more
will die from this disease. Therefore, scientific research (both clinical
and theoretical) on cancer is crucial for the research community.
The theoretical study of cancer through mathematical modeling is a
valuable approach to shaping our understanding of tumor-immune
dynamics. Significant research work [3–5] has been done to understand
the tumor-immune dynamics.

Researching a suitable cancer treatment method is a broad research
area in medical science. Chemotherapy [6], radiotherapy [7], and
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virotherapy [8] are widely used in the cancer eradication process.
Immunotherapy is gaining more interest in cancer treatment as it has
fewer side effects than other methods. The two types of immunother-
apy are: one is passive (such as ACI and CAR-T cell therapy), where
the external input of the immune system is used to attack tumor
cells directly, and the other is active, where the external input en-
hances the immune system (such as IL-2 therapy, vaccine therapy) [9–
11]. Moreover, scientific studies have reported that vitamin interven-
tion and nutritional diet are also responsible for suppressing cancer
formation [12,13]. Researchers claim that with the combination of
various therapeutic approaches, cancer can be eradicated from the
body optimally [14]. Mathematical modeling is making a significant
contribution to the treatment of cancer. The reviewed work of Malinzi
et al. [15] discussed some mathematical models related to different can-
cer treatment methods. de Pillis et al. [16] presented a mathematical
vailable online 5 September 2022
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model of tumor growth using mixed immunotherapy and chemother-
apy. Freedman and Pinho developed a radiation treatment model [7]
for cancer where the radiation affects normal cells proportionately.
Bunimovich-Mendrazitsky et al. [17] analyzed a mathematical model of
BCG immunotherapy for superficial bladder cancer. In [18], the authors
explored the role of antibodies in controlling cancer growth. Makhlouf
et al. [9] designed a treatment protocol considering chemotherapy, IL-
2 cytokine therapy, 𝐶𝐷8+𝑇 , and 𝐶𝐷4+𝑇 adoptive immunotherapy and
investigated the effects of natural killer cells, circulating lymphocytes,
𝐶𝐷8+𝑇 cells, and 𝐶𝐷4+𝑇 cells on cancer cells. A modified nonlinear
ancer model was analyzed in [8] using virotherapy and obtained the
ptimal dosage for long-term tumor eradication. The authors in [19]
eveloped a cancer growth model incorporating chemotherapy and
argeted drugs to investigate the impact of competition between cancer
ells and healthy cells. Schlicke et al. [11] presented a mathematical
odel taking into account different treatment possibilities, and they

nalyzed the results derived from those possibilities after they were
itted to three patients with non-small cell lung cancer. The authors
f [20] investigated a fractional-order tumor-immune-vitamin model
TIVM) under the Mittag-Leffler derivative and showed the effect of
itamins on tumor cell growth for different fractional orders.

The use of optimal control in a model of cancer treatment is
ot new. It is a well-known tool for studying treatment protocols
ith constraints. Sharma and Samanta [21] investigated the effects
f chemotherapeutic and immunotherapeutic drugs in a tumor growth
odel [3], using quadratic optimal drug control. In [10], the author

nalyzed the combined effect of optimal treatment strategies by ap-
lying adoptive cellular immunotherapy and interleukin-2 therapy to a
ancer treatment model. Rihan et al. [22] presented a delay differential
odel with optimal control to examine the interactions of the tumor

ells and immune response cells with chemo-immunotherapy. Sweilam
t al. [23] presented a fractional-order cancer treatment model and
et up an optimal control problem for anti-angiogenic and immune
ell therapies. A breast cancer fractional-order model was discussed
n [24] in the presence of an immune-chemotherapeutic treatment
rocess under control parameters: ketogenic diet, immune booster, and
nti-cancer drugs. Das et al. [25] proposed and analyzed an optimal
ontrol problem for a delayed tumor-immune model in the presence of
multi-immuno-chemotherapeutic drug.

Several experimental studies have shown that obesity is a risk factor
or different types of cancer. Theoretical studies [26–30] have also
stablished that adipocytes, or fat cells, contribute to the growth of
umor cells. Thus, it is essential to investigate the role of obesity or fat
ells in a cancerous system and find treatment protocols that control
he excess growth of fat cells and cancer cells. In order to do this, Ku-
arrillo et al. [31] developed a cancer-obesity model that considers the

mmune system response and the effects of obesity on cancer growth.
urthermore, they extended their work [31] by introducing optimal
hemotherapy treatment and establishing that losing weight can be
elpful for chemotherapy treatment [32]. Yanti and Habibah [33]
nvestigated the stability of the model [31] under chemotherapy. Ar-
had et al. [34] extended the model [31] to a fractional one and
hen investigated the role of obesity in the tumor-immune model.
n [35], the authors found the optimal chemotherapy and immunother-
py treatment schedule for a cancer-obesity model with the Caputo
ime-fractional derivative. However, in the works mentioned above,
he authors have not discussed the effect of nutritional diet on the
odel [31] that may directly control the fat cells of our body. In the

urrent study, we propose and analyze a modified cancer-obesity model
or tumor growth to discuss the optimal effect of nutritional diet along
ith two immuno-therapeutic treatments (IL-2 therapy and ACI ther-
py) on the model [31]. We aim to study the variation in tumor growth
nder control parameters: immune booster (IL-2 therapy), anti-cancer
rugs (ACI therapy), and nutritional diet.

The rest of the paper is organized as follows: In Section ‘‘Model
2

escription’’, the formulated model is presented. In Section ‘‘Model u
without treatment’’, the stability of the model without treatment has
been checked. Stability analysis of the model with treatment has been
examined in Section ‘‘Model with treatment’’. The numerical simulation
of our theoretical results has been carried out in Section ‘‘Optimal
control’’. Finally, in Section ‘‘Numerical simulation’’, an optimal con-
trol problem has been set up for the treatment model by considering
treatment parameters as the control inputs.

2. Model description

In this study, we consider a model initially proposed by Ku-Carrilo
et al. [31]. The authors proposed their model based on the works of
de Pillis and Radunskaya [6]. Ku-Carrilo et al. [31] studied the effect
of obesity on the growth of cancer using the following set of ordinary
differential equations:

𝑑𝐼
𝑑𝑡

= 𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼,

𝑑𝑇
𝑑𝑡

= 𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 ,

𝑑𝑁
𝑑𝑡

= 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁,

𝑑𝐹
𝑑𝑡

= 𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 ,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(1)

where 𝐼(𝑡) denotes the number of immune cells, 𝑇 (𝑡) denotes the num-
er of tumor cells, 𝑁(𝑡) denotes the number of normal cells, and 𝐹 (𝑡)
enotes the number of fat cells. The constant source rate of immune
ells is ‘𝑠’. The term 𝜌𝐼𝑇

𝛼+𝑇+𝜇𝐹 is the stimulatory effect of immune cells
on account of cancer and fat cells. ‘𝑑1’ is the natural death rate of the
immune cells. It is assumed that tumor, normal, and fat cells can grow
logistically with different growth rates 𝑟1, 𝑟2, and 𝑟3 respectively. 𝑏1, 𝑏2,
and 𝑏3 represent the inverse of the carrying capacity for tumor cells,
normal cells, and fat cells, respectively. The term ‘𝑐5𝑇𝐹 ’ denotes the
contribution of fat cells to tumor growth. 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6 are
competition coefficients.

In [31], the authors have verified different scenarios reported in
clinical studies, such as the effect of obesity on increasing cancer
growth and the effect of a low or high caloric diet. Further, they
analyzed the model with the use of optimal chemotherapeutic treat-
ment [32] and observed that the effects of losing weight could be
adjuvant to chemotherapy treatment.

In our study, we are interested in analyzing the model (1) for
the particular sets of parameters used in combination treatment pro-
cedures. Since immunotherapy such as IL-2 therapy helps the body’s
immune system fight against cancer cells, the model (1) is extended to
include an external source of immunotherapy treatment [3,4]. We add
a new term 𝛿(𝑡)𝜎1 to represent the input rate of externally administered
nti-tumor immune therapy, where 𝛿(𝑡) is the IL-2 therapy control
arameter. Therefore, the first equation of (1) becomes
𝑑𝐼
𝑑𝑡

= 𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿(𝑡)𝜎1.

Next, we modified the second equation of the system (1) with
he use of ACI treatment therapy, which has an anti-tumor activity
hat can be achieved in conjunction with the high dosage of human
ecombinant IL-2 [15,22,25]. So, the term −𝛾(𝑡)𝑇 is added to the second
quation, representing the tumor cells killed by an external injection
f adoptive cellular immunotherapy, where 𝛾(𝑡) is the time-dependent
CI treatment control parameter. Therefore, the second equation of (1)
ecomes
𝑑𝑇
𝑑𝑡

= 𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾(𝑡)𝑇 .

Ku-Carrilo et al. [31] reported that fat cells contribute to cancer cell
rowth. They also showed that a low-calorie diet prevents the patient’s
ondition from worsening compared to a high-calorie diet. So we are
nterested in controlling the growth of fat cells so that cancer cells grow
nder control via a nutritional diet [12,24]. Therefore, in the fourth
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𝐹

equation, we introduced a new term −𝛽(𝑡)𝐹 , where 𝛽(𝑡) denotes the
nutritional diet control parameter, and hence the equation becomes
𝑑𝐹
𝑑𝑡

= 𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽(𝑡)𝐹 .

Therefore, the modified model becomes

𝑑𝐼
𝑑𝑡

= 𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿(𝑡)𝜎1,

𝑑𝑇
𝑑𝑡

= 𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾(𝑡)𝑇 ,

𝑑𝑁
𝑑𝑡

= 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁,

𝑑𝐹
𝑑𝑡

= 𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽(𝑡)𝐹 ,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(2)

satisfying the known initial conditions 𝐼(0) = 𝐼0, 𝑇 (0) = 𝑇0, 𝑁(0) = 𝑁0,
(0) = 𝐹0 and 𝛿(𝑡), 𝛾(𝑡), and 𝛽(𝑡) are the time-dependent treatment

control parameters. We also assume that all the parameter values are
positive and the system (2) ensures positive solutions for the state
equations 𝐼(𝑡), 𝑇 (𝑡), 𝑁(𝑡) and 𝐹 (𝑡). All parameters are taken from the
paper [31].

3. Model without treatment

It is necessary to understand the dynamic behavior of the model in
the absence of treatment before studying its effect on the model. In this
section, we will check the system’s behavior without treatment at each
equilibrium point. For this, the model where 𝛿(𝑡) = 0, 𝛾(𝑡) = 0, and
𝛽(𝑡) = 0 becomes

𝑑𝐼
𝑑𝑡

= 𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼,

𝑑𝑇
𝑑𝑡

= 𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 ,

𝑑𝑁
𝑑𝑡

= 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁,

𝑑𝐹
𝑑𝑡

= 𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 .

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(3)

To find the equilibria of the system (3), we set 𝑑𝐼
𝑑𝑡 = 0, 𝑑𝑇

𝑑𝑡 = 0, 𝑑𝑁
𝑑𝑡 = 0

and 𝑑𝐹
𝑑𝑡 = 0.

The equilibrium points of the system (3) are

• Dead equilibrium:
(i) 𝐸0(

𝑠
𝑑1
, 0, 0, 0), (ii) 𝐸1(

𝑠
𝑑1
, 0, 0, 1

𝑏3
)

• Disease-free equilibrium:
(iii) 𝐸2(

𝑠
𝑑1
, 0, 1

𝑏2
, 0), (iv) 𝐸3(

𝑠
𝑑1
, 0, 1

𝑏2 ,
1
𝑏3
)

• Disease-persistent equilibrium:
(v) 𝐸5(𝐼 = 𝑟1(1−𝑏1 𝑇̄ )

𝑐2
, 𝑇̄ , 0, 0) where 𝑇̄ will be calculated from the

equation

𝑐1𝐼𝑇̄
2 − (𝑠 + 𝜌𝐼 − 𝑐1𝛼𝐼 − 𝑑1𝐼)𝑇̄ + (𝑑1𝛼𝐼 − 𝑠𝛼) = 0,

and 𝑇̄ < 1. If 𝑇̄ = 1, then the size of the tumor is maximum. This
equilibrium will exist for 𝑏1𝑇̄ < 1.
(vi) 𝐸6

(

𝐼 = 𝑟1 𝑇̌ (1−𝑏1 𝑇̌ )+𝑐5 𝑇̌ 𝐹
𝑐2 𝑇̌

, 𝑇̌ , 0, 𝐹 = 𝑟3−𝑐6 𝑇̌
𝑟3𝑏3

)

where 𝑇̌ will be
calculated from the equation

𝑐1𝐼𝑇̌
2−(𝑠+𝜌𝐼−𝑐1𝛼𝐼−𝑐1𝜇𝐼𝐹−𝑑1𝐼)𝑇̌+(𝑑1𝛼𝐼+𝑑1𝜇𝐼𝐹−𝑠𝛼−𝑠𝜇𝐹 ) = 0,

also 𝑇̌ < 1. If 𝑇̌ = 1, then the size of the tumor is maximum.
Equilibrium 𝐸6 will exist for 𝑏1𝑇̌ < 1 and 𝑐6𝑇̌ < 𝑟3.

• Co-axial equilibrium:
(vii) The equilibrium 𝐸7

(

𝐼 = 𝑟1(1−𝑏1 𝑇̃ )−𝑐3𝑁̃
𝑐2

, 𝑇̃ , 𝑁̃ = 𝑟2−𝑐4 𝑇̃
𝑟2𝑏2

, 0
)

will
exist for 𝑏1𝑇̃ < 1, 𝑟1(1 − 𝑏1𝑇̃ ) > 𝑐3𝑁̃ and 𝑟2 > 𝑐4𝑇̃ , where 𝑇̃ will
be calculated from the equation

𝑐 𝐼𝑇̃ 2 − (𝑠 + 𝜌𝐼 − 𝑐 𝛼𝐼 − 𝑑 𝐼)𝑇̃ + (𝑑 𝛼𝐼 − 𝑠𝛼) = 0,
3

1 1 1 1
and 𝑇̃ < 1. If 𝑇̃ = 1, then the size of the tumor is maximum. (viii)
The equilibrium 𝐸8

(

𝐼 = 𝑟1(1−𝑏1 𝑇̂ )−𝑐3𝑁̂+𝑐5𝐹
𝑐2

, 𝑇̂ , 𝑁̂ = 𝑟2−𝑐4 𝑇̂
𝑟2𝑏2

, 𝐹 =
𝑟3−𝑐6 𝑇̂
𝑟3𝑏3

)

will exist for 𝑏1𝑇̂ < 1, 𝑟1(1 − 𝑏1𝑇̂ ) > 𝑐3𝑁̂ , 𝑟2 > 𝑐4𝑇̃ and
𝑟3 > 𝑐6𝑇̂ , where 𝑇̂ will be calculated from the equation

𝑐1𝐼𝑇̂
2−(𝑠+𝜌𝐼−𝑐1𝛼𝐼−𝑐1𝜇𝐼𝐹−𝑑1𝐼)𝑇̂+(𝑑1𝛼𝐼+𝑑1𝜇𝐼𝐹−𝑠𝛼−𝑠𝜇𝐹 ) = 0,

and 𝑇̂ < 1. If 𝑇̂ = 1, then the size of the tumor is maximum.

As 𝑁 = 0 is tantamount to the death of a person, we are not
considering those equilibria for stability analysis. In order to check local
stability, we calculate the Jacobian of the system, which is given by

𝐸 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑗11 𝑗12 0 𝑗14

𝑗21 𝑗22 𝑗23 𝑗24

0 𝑗32 𝑗33 0

0 𝑗42 0 𝑗44

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4)

where 𝑗11 =
𝜌𝑇

𝛼+𝜇𝐹+𝑇 − 𝑐1𝑇 − 𝑑1, 𝑗12 =
(𝛼+𝜇𝐹 )𝜌𝐼
(𝛼+𝑇+𝜇𝐹 )2 − 𝑐1𝐼 , 𝑗14 = − 𝜌𝜇𝐼𝑇

(𝛼+𝑇+𝜇𝐹 )2 ,
𝑗21 = −𝑐2𝑇 , 𝑗22 = 𝑟1−2𝑟1𝑏1𝑇−𝑐2𝐼−𝑐3𝑁+𝑐5𝐹 , 𝑗23 = −𝑐3𝑇 , 𝑗24 = 𝑐5𝑇 , 𝑗32 =
−𝑐4𝑁 , 𝑗33 = 𝑟2 − 2𝑟2𝑏2𝑁 − 𝑐4𝑇 , 𝑗42 = −𝑐6𝐹 and 𝑗44 = 𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇 .

The eigenvalues of the Jacobian (4) corresponding to the disease-
free equilibrium 𝐸2 are −𝑑1, 𝑟1 − 𝑠𝑐2

𝑑1
− 𝑐3

𝑏2
, −𝑟2 and 𝑟3. Since, 𝑟3 > 0

hence, 𝐸2 is unstable. The eigenvalues of the Jacobian (4) at disease-
free equilibrium 𝐸3 are −𝑑1, 𝑟1 −

𝑐2𝑠
𝑑1

− 𝑐3
𝑏2

+ 𝑐5
𝑏3

, −𝑟2 and −𝑟3. Hence, for
𝑟1 +

𝑐5
𝑏3

< 𝑐2𝑠
𝑑1

+ 𝑐3
𝑏2

the equilibrium 𝐸3 becomes stable.
At 𝐸7(𝐼, 𝑇̃ , 𝑁̃, 0), the eigenvalues of the Jacobian (4) are 𝑟3 − 𝑐6𝑇̃

and the other three eigenvalues are the roots of the following cubic
equation

𝜆3 + 𝑃1𝜆
2 + 𝑃2𝜆 + 𝑃3 = 0, (5)

where

⎧

⎪

⎨

⎪

⎩

𝑃1 = −𝑝11 − 𝑝22 − 𝑝33,

𝑃2 = 𝑝22𝑝33 − 𝑝32𝑝23 + 𝑝11𝑝33 + 𝑝11𝑝22 − 𝑝21𝑝12,

𝑃3 = 𝑝11𝑝23𝑝32 + 𝑝21𝑝12𝑝33 − 𝑝11𝑝22𝑝33,

with

𝑝11 =
𝜌𝑇̃

𝛼 + 𝑇̃
− 𝑐1𝑇̃ − 𝑑1, 𝑝12 =

𝛼𝜌𝐼
(𝛼 + 𝑇̃ )2

− 𝑐1𝐼, 𝑝21 = −𝑐2𝑇̃ ,

𝑝22 = 𝑟1 − 2𝑟1𝑏1𝑇̃ − 𝑐2𝐼 − 𝑐3𝑁̃, 𝑝23 = −𝑐3𝑇̃ , 𝑝32 = −𝑐4𝑁̃,

𝑝33 = 𝑟2 − 2𝑟2𝑏2𝑁̃ − 𝑐4𝑇̃ .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

According to Routh–Hurwitz rule, the roots of Eq. (5) have negative
real part if and only if

𝑃1 > 0, 𝑃2 > 0, 𝑃1𝑃2 − 𝑃3 > 0. (6)

Hence, for local asymptotical stability at 𝐸7, the conditions 𝑟3
𝑐6

< 𝑇̃
and (6) must hold. Otherwise it will be unstable.

At co-axial equilibrium 𝐸8(𝐼, 𝑇̂ , 𝑁̂, 𝐹 ), the characteristic values of
the corresponding Jacobian matrix (4) are the roots of the following
quartic equation

𝜆4 +𝑄1𝜆
3 +𝑄2𝜆

2 +𝑄3𝜆 +𝑄4 = 0,

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄1 = −𝑎 − 𝑒 − 𝑖 − 𝑙,

𝑄2 = 𝑎𝑒 − 𝑏𝑑 + 𝑎𝑖 + 𝑎𝑙 + 𝑒𝑖 − 𝑓ℎ + 𝑒𝑙 − 𝑔𝑘 + 𝑖𝑙,

𝑄3 = 𝑎𝑓ℎ − 𝑎𝑒𝑖 + 𝑏𝑑𝑖 − 𝑎𝑒𝑙 + 𝑏𝑑𝑙 − 𝑐𝑑𝑘 + 𝑎𝑔𝑘 − 𝑎𝑖𝑙 − 𝑒𝑖𝑙 + 𝑓ℎ𝑙 + 𝑔𝑖𝑘,

𝑄4 = 𝑎𝑒𝑖𝑙 − 𝑎𝑓ℎ𝑙 − 𝑏𝑑𝑖𝑙 + 𝑐𝑑𝑖𝑘 − 𝑎𝑔𝑖𝑘,

with Box I.
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4

a
p
H

T

𝑎 =
𝜌𝑇̂

𝛼 + 𝜇𝐹 + 𝑇̂
− 𝑐1𝑇̂ − 𝑑1, 𝑏 =

(𝛼 + 𝜇𝐹 )𝜌𝐼
(𝛼 + 𝑇̂ + 𝜇𝐹 )2

− 𝑐1𝐼, 𝑐 = −
𝜌𝜇𝐼𝑇̂

(𝛼 + 𝑇̂ + 𝜇𝐹 )2
,

𝑑 = −𝑐2𝑇̂ , 𝑒 = 𝑟1 − 2𝑟1𝑏1𝑇̂ − 𝑐2𝐼 − 𝑐3𝑁̂ + 𝑐5𝐹 , 𝑓 = −𝑐3𝑇̂ , 𝑔 = 𝑐5𝑇̂ ,

ℎ = −𝑐4𝑁̂, 𝑖 = 𝑟2 − 2𝑟2𝑏2𝑁̂ − 𝑐4𝑇̂ , 𝑘 = −𝑐6𝐹 , 𝑙 = 𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇̂ .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Therefore, by Routh–Hurwitz rule, the equilibrium point 𝐸8 will be locally asymptotically stable if

𝑄1 >0, 𝑄3 > 0, 𝑄4 > 0,

and 𝑄1𝑄2𝑄3 > 𝑄2
3 +𝑄2

1𝑄4.

Box I.
a

. Model with treatment

In this section, we will study the existence and stability behavior
t various equilibrium points of the system (2) when treatments are
resent. In order to do the same, we set 𝛿(𝑡) = 𝛿, 𝛾(𝑡) = 𝛾, and 𝛽(𝑡) = 𝛽.
ence the system (2) becomes

𝑑𝐼
𝑑𝑡

= 𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿𝜎1,

𝑑𝑇
𝑑𝑡

= 𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾𝑇 ,

𝑑𝑁
𝑑𝑡

= 𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁,

𝑑𝐹
𝑑𝑡

= 𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽𝐹 .

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(7)

o find the equilibria of the system (7), we set 𝑑𝐼
𝑑𝑡 = 0, 𝑑𝑇

𝑑𝑡 = 0, 𝑑𝑁
𝑑𝑡 = 0

and 𝑑𝐹
𝑑𝑡 = 0. The equilibrium point of the system (7) are

• Dead equilibrium:
(i) 𝐸′

0(
𝑠+𝛿𝜎1
𝑑1

, 0, 0, 0), (ii) 𝐸′
1(

𝑠+𝛿𝜎1
𝑑1

, 0, 0, 𝑟3−𝛽𝑟3𝑏3
)

• Disease-free equilibrium:
(iii) 𝐸′

2(
𝑠+𝛿𝜎1
𝑑1

, 0, 1
𝑏2
, 0), (iv) 𝐸′

3(
𝑠+𝛿𝜎1
𝑑1

, 0, 1
𝑏2 ,

𝑟3−𝛽
𝑟3𝑏3

)

• Disease-persistent equilibrium:
(v) 𝐸′

5(𝐼
′ = 𝑟1(1−𝑏1 𝑇̄ ′)−𝛾

𝑐2
, 𝑇̄ ′, 0, 0) where 𝑇̄ ′ will be calculated from

the equation

𝑐1𝐼
′𝑇̄ ′2 − (𝑠+ 𝜌𝐼 ′ − 𝑐1𝛼𝐼

′ − 𝑑1𝐼
′ + 𝛿𝜎1)𝑇̄ ′ + (𝑑1𝛼𝐼 ′ − 𝑠𝛼 − 𝛿𝛼𝜎1) = 0,

and 𝑇̄ ′ < 1. If 𝑇̄ ′ = 1, then the size of the tumor is maximum. This
equilibrium will exist for 𝑏1𝑇̄ ′ < 1.
(vi) 𝐸′

6
(

𝐼 ′ = 𝑟1(1−𝑏1 𝑇̌ ′)+𝑐5𝐹 ′−𝛾
𝑐2

, 𝑇̌ ′, 0, 𝐹 ′ = 𝑟3−𝑐6 𝑇̌ ′−𝛽
𝑟3𝑏3

)

where 𝑇̌ ′ will
be calculated from the equation

𝑐1𝐼
′𝑇̌ ′2 − (𝑠 + 𝜌𝐼 ′ − 𝑐1𝛼𝐼

′ − 𝑐1𝜇𝐼
′𝐹 ′ − 𝑑1𝐼

′ + 𝛿𝜎1)𝑇̌ ′

+ (𝑑1𝛼𝐼 ′ + 𝑑1𝜇𝐼
′𝐹 ′ − 𝑠𝛼 − 𝑠𝜇𝐹 ′ − 𝛿𝛼𝜎1 − 𝛿𝜇𝜎1𝐹

′) = 0,

and 𝑇̌ ′ < 1. If 𝑇̌ ′ = 1, then the size of the tumor is maximum.
Equilibrium 𝐸′

6 will exist for 𝑏1𝑇̌ ′ < 1 and 𝑐6𝑇̌ ′ < 𝑟3.
• Co-axial equilibrium:

(vii) The equilibrium 𝐸′
7
(

𝐼 ′ = 𝑟1(1−𝑏1 𝑇̃ ′)−𝑐3𝑁̃ ′−𝛾
𝑐2

, 𝑇̃ ′, 𝑁̃ ′ = 𝑟2−𝑐4 𝑇̃ ′

𝑟2𝑏2
, 0
)

will exist for 𝑏1𝑇̃ ′ < 1, 𝑟1(1−𝑏1𝑇̃ ′) > 𝑐3𝑁̃ ′+𝛾 and 𝑟2 > 𝑐4𝑇̃ ′, where
𝑇̃ ′ will be calculated from the equation

𝑐1𝐼
′𝑇̃ ′2 − (𝑠+ 𝜌𝐼 ′ − 𝑐1𝛼𝐼

′ − 𝑑1𝐼
′ + 𝛿𝜎1)𝑇̃ ′ + (𝑑1𝛼𝐼 ′ − 𝑠𝛼 − 𝛿𝛼𝜎1) = 0,

and 𝑇̃ ′ < 1. If 𝑇̃ ′ = 1, then the size of the tumor is maximum.
(viii) The equilibrium 𝐸′

8
(

𝐼 ′ = 𝑟1(1−𝑏1 𝑇̂ ′)−𝑐3𝑁̂ ′+𝑐5𝐹 ′−𝛾
𝑐2

, 𝑇̂ ′, 𝑁̂ ′ =
𝑟2−𝑐4 𝑇̂ ′

𝑟2𝑏2
, 𝐹 ′ = 𝑟3−𝑐6 𝑇̂ ′−𝛽

𝑟3𝑏3

)

will exist for 𝑏1𝑇̂ ′ < 1, 𝑟1(1 − 𝑏1𝑇̂ ′) >
𝑐3𝑁̂ ′ + 𝛾, 𝑟2 > 𝑐4𝑇̃ ′ and 𝑟3 > 𝑐6𝑇̂ ′ + 𝛽, where 𝑇̂ ′ will be calculated
from the equation

𝑐 𝐼 ′𝑇̂ ′2 − (𝑠 + 𝜌𝐼 ′ − 𝑐 𝛼𝐼 ′ − 𝑐 𝜇𝐼 ′𝐹 ′ − 𝑑 𝐼 ′ + 𝛿𝜎 )𝑇̂ ′
4

1 1 1 1 1 o
+ (𝑑1𝛼𝐼 ′ + 𝑑1𝜇𝐼
′𝐹 ′ − 𝑠𝛼 − 𝑠𝜇𝐹 ′ − 𝛿𝛼𝜎1 − 𝛿𝜇𝜎1𝐹

′) = 0,

and 𝑇̂ ′ < 1. If 𝑇̂ ′ = 1, then the size of the tumor is maximum.

As in the preceding section, we have done the local stability analysis
of the system (7), excluding the equilibrium points where 𝑁 = 0. The
Jacobian matrix of the system (7) is given below:

 ′
𝐸′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑗′11 𝑗′12 0 𝑗′14

𝑗′21 𝑗′22 𝑗′23 𝑗′24

0 𝑗′32 𝑗′33 0

0 𝑗′42 0 𝑗′44

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

where 𝑗11 =
𝜌𝑇

𝛼+𝜇𝐹+𝑇 − 𝑐1𝑇 − 𝑑1, 𝑗12 =
(𝛼+𝜇𝐹 )𝜌𝐼
(𝛼+𝑇+𝜇𝐹 )2 − 𝑐1𝐼 , 𝑗14 = − 𝜌𝜇𝐼𝑇

(𝛼+𝑇+𝜇𝐹 )2 ,
𝑗21 = −𝑐2𝑇 , 𝑗22 = 𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐼 − 𝑐3𝑁 + 𝑐5𝐹 − 𝛾, 𝑗23 = −𝑐3𝑇 ,
𝑗24 = 𝑐5𝑇 , 𝑗32 = −𝑐4𝑁 , 𝑗33 = 𝑟2 − 2𝑟2𝑏2𝑁 − 𝑐4𝑇 , 𝑗42 = −𝑐6𝐹 , and
𝑗44 = 𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇 − 𝛽.

The eigenvalues of the Jacobian matrix (8) at the disease-free
equilibrium 𝐸′

2 are −𝑑1, 𝑟1 − 𝑐2(𝑠+𝛿𝜎1)
𝑑1

− 𝑐3
𝑏2

− 𝛾, −𝑟2 and 𝑟3 − 𝛽. This
equilibrium becomes stable if 𝑟1 < 𝛾+ 𝑐2(𝑠+𝛿𝜎1)

𝑑1
+ 𝑐3

𝑏2
and 𝑟3 < 𝛽, otherwise

unstable.
Corresponding to another disease-free equilibrium 𝐸′

3, the eigenval-
ues of the Jacobian (8) are −𝑑1, 𝑟1 −

𝑐2(𝑠+𝛿𝜎1)
𝑑1

− 𝑐3
𝑏2

+ 𝑐5(𝑟3−𝛽)
𝑟3𝑏3

− 𝛾, −𝑟2 and
𝛽− 𝑟3. Now, 𝐸′

3 becomes stable if 𝑟1−
𝑐2(𝑠+𝛿𝜎1)

𝑑1
− 𝑐3

𝑏2
+ 𝑐5(𝑟3−𝛽)

𝑟3𝑏3
− 𝛾 < 0 ⟹

𝑟1 +
𝑐5(𝑟3−𝛽)
𝑟3𝑏3

< 𝑐2(𝑠+𝛿𝜎1)
𝑑1

+ 𝑐3
𝑏2

+ 𝛾 and 𝛽 < 𝑟3.
At 𝐸′

7(𝐼
′, 𝑇̃ ′, 𝑁̃ ′, 0), the eigenvalues are 𝑟3− 𝑐6𝑇̃ ′ and the other three

eigenvalues are the roots of the following cubic equation

𝜆3 + 𝑃 ′
1𝜆

2 + 𝑃 ′
2𝜆 + 𝑃 ′

3 = 0, (9)

where
⎧

⎪

⎨

⎪

⎩

𝑃 ′
1 = −𝑝′11 − 𝑝′22 − 𝑝′33,

𝑃 ′
2 = 𝑝′22𝑝

′
33 − 𝑝′32𝑝

′
23 + 𝑝′11𝑝

′
33 + 𝑝′11𝑝

′
22 − 𝑝′21𝑝

′
12,

𝑃 ′
3 = 𝑝′11𝑝

′
23𝑝

′
32 + 𝑝′21𝑝

′
12𝑝

′
33 − 𝑝′11𝑝

′
22𝑝

′
33,

with

𝑝′11 =
𝜌𝑇̃ ′

𝛼 + 𝑇̃ ′
− 𝑐1𝑇̃

′ − 𝑑1, 𝑝′12 =
𝛼𝜌𝐼 ′

(𝛼 + 𝑇̃ ′)2
− 𝑐1𝐼

′, 𝑝′21 = −𝑐2𝑇̃ ′,

𝑝′22 = 𝑟1 − 2𝑟1𝑏1𝑇̃ ′ − 𝑐2𝐼
′ − 𝑐3𝑁̃

′, 𝑝′23 = −𝑐3𝑇̃ ′, 𝑝′32 = −𝑐4𝑁̃ ′,

𝑝′33 = 𝑟2 − 2𝑟2𝑏2𝑁̃ ′ − 𝑐4𝑇̃
′.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

According to Routh–Hurwitz rule, the roots of Eq. (9) have negative
real part if and only if

𝑃 ′
1 > 0, 𝑃 ′

2 > 0, 𝑃 ′
1𝑃

′
2 − 𝑃 ′

3 > 0. (10)

Hence, for local asymptotical stability at 𝐸′
7, the conditions 𝑟3

𝑐6
< 𝑇̃ ′

nd (10) must holds; otherwise it will be unstable.
At co-axial equilibrium 𝐸′

8(𝐼
′, 𝑇̂ ′, 𝑁̂ ′, 𝐹 ′), the characteristics values

f the corresponding Jacobian matrix (8) are the roots of the following
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𝑎′ =
𝜌𝑇̂ ′

𝛼 + 𝜇𝐹 ′ + 𝑇̂ ′
− 𝑐1𝑇̂

′ − 𝑑1, 𝑏′ =
(𝛼 + 𝜇𝐹 ′)𝜌𝐼 ′

(𝛼 + 𝑇̂ ′ + 𝜇𝐹 ′)2
− 𝑐1𝐼

′, 𝑐′ = −
𝜌𝜇𝐼 ′𝑇̂ ′

(𝛼 + 𝑇̂ ′ + 𝜇𝐹 ′)2
,

𝑑′ = −𝑐2𝑇̂ ′, 𝑒′ = 𝑟1 − 2𝑟1𝑏1𝑇̂ ′ − 𝑐2𝐼
′ − 𝑐3𝑁̂

′ + 𝑐5𝐹
′ − 𝛾, 𝑓 ′ = −𝑐3𝑇̂ ′, 𝑔′ = 𝑐5𝑇̂

′,

ℎ′ = −𝑐4𝑁̂ ′, 𝑖′ = 𝑟2 − 2𝑟2𝑏2𝑁̂ ′ − 𝑐4𝑇̂
′, 𝑘′ = −𝑐6𝐹 ′, 𝑙′ = 𝑟3 − 2𝑟3𝑏3𝐹 ′ − 𝑐6𝑇̂

′ − 𝛽.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Therefore, by Routh–Hurwitz rule, the equilibrium point 𝐸′
8 will be asymptotically stable if

𝑄′
1 >0, 𝑄′

3 > 0, 𝑄′
4 > 0,

and 𝑄′
1𝑄

′
2𝑄

′
3 > 𝑄′2

3 +𝑄′2
1 𝑄

′
4.

Box II.
w

𝑌

𝑄

a

𝑀

quartic equation

𝜆4 +𝑄′
1𝜆

3 +𝑄′
2𝜆

2 +𝑄′
3𝜆 +𝑄′

4 = 0,

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑄′
1 = −𝑎′ − 𝑒′ − 𝑖′ − 𝑙′,

𝑄′
2 = 𝑎′𝑒′ − 𝑏′𝑑′ + 𝑎′𝑖′ + 𝑎′𝑙′ + 𝑒′𝑖′ − 𝑓 ′ℎ′ + 𝑒′𝑙′ − 𝑔′𝑘′ + 𝑖′𝑙′,

𝑄′
3 = 𝑎′𝑓 ′ℎ′ − 𝑎′𝑒′𝑖′ + 𝑏′𝑑′𝑖′ − 𝑎′𝑒′𝑙′ + 𝑏′𝑑′𝑙′ − 𝑐′𝑑′𝑘′+

𝑎′𝑔′𝑘′ − 𝑎′𝑖′𝑙′ − 𝑒′𝑖′𝑙′ + 𝑓 ′ℎ′𝑙′ + 𝑔′𝑖′𝑘′,

𝑄′
4 = 𝑎′𝑒′𝑖′𝑙′ − 𝑎′𝑓 ′ℎ′𝑙′ − 𝑏′𝑑′𝑖′𝑙′ + 𝑐′𝑑′𝑖′𝑘′ − 𝑎′𝑔′𝑖′𝑘′,

with Box II.

4.1. Global stability at disease-free equilibrium 𝐸′
2(𝐼

′
2 =

𝑠+𝛿𝜎1
𝑑1

, 𝑇 ′
2 = 0, 𝑁 ′

2 =
1
𝑏2
, 𝐹 ′

2 = 0)

In the above section, we have derived the local stability conditions
of the system (7) at various equilibrium points. Local stability analysis
describes stability behavior in the neighborhood of an equilibrium
point. On the contrary, global stability analysis at a point describes
the stability behavior of the system that happens further away from
the equilibrium. So, in this section, we will derive the conditions for
global stability at disease-free equilibrium. 𝐸′

2(𝐼
′
2 = 𝑠+𝛿𝜎1

𝑑1
, 𝑇 ′

2 = 0, 𝑁 ′
2 =

1
𝑏2
, 𝐹 ′

2 = 0) by the Lyapunov theorem. Also, from the biological point of
view, it is necessary to show that the disease-free equilibrium is globally
stable. We consider the Lyapunov function as

𝑉 (𝑡) =
(

𝐼 − 𝐼 ′2 − 𝐼 ′2ln
𝐼
𝐼 ′2

)

+ (𝑇 − 𝑇 ′
2 ) +

(

𝑁 −𝑁 ′
2 −𝑁 ′

2ln
𝑁
𝑁 ′

2

)

+ (𝐹 − 𝐹 ′
2).

Now, differentiating above equation with respect to 𝑡 and we get

𝑑𝑉
𝑑𝑡

=
(

1 −
𝐼 ′2
𝐼
)𝑑𝐼
𝑑𝑡

+ 𝑑𝑇
𝑑𝑡

+
(

1 −
𝑁 ′

2
𝑁

)𝑑𝑁
𝑑𝑡

+ 𝑑𝐹
𝑑𝑡

=
(

1 −
𝐼 ′2
𝐼
)

(

𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿𝜎1

)

+
(

𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾𝑇
)

+
(

1 −
𝑁 ′

2
𝑁

)(

𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁
)

+
(

𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽𝐹
)

=
( 𝐼 − 𝐼 ′2

𝐼

)(

𝜌𝐼𝑇
𝛼 + 𝑇 + 𝜇𝐹

− 𝑐1𝑇 𝐼 − 𝑑1(𝐼 − 𝐼 ′2)
)

+
(

𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝑇 (𝐼 − 𝐼 ′2) − 𝑐2𝑇 𝐼
′
2

− 𝑐3𝑇 (𝑁 −𝑁 ′
2) − 𝑐3𝑇𝑁

′
2 + 𝑐5𝑇𝐹 − 𝛾𝑇

)

+
(𝑁 −𝑁 ′

2
)(

𝑟2(𝑁 −𝑁 ′) − 𝑟2𝑏2(𝑁2 −𝑁 ′2) − 𝑐4𝑇𝑁
)

5

𝑁 2 2
+
(

𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽𝐹
)

=
(

𝐼 −
𝑠 + 𝛿𝜎1

𝑑1

) (

𝜌𝑇
𝛼 + 𝑇 + 𝜇𝐹

− 𝑐1𝑇 −
𝑑1
𝐼
(

𝐼 −
𝑠 + 𝛿𝜎1

𝑑1

)

+
(

−𝑟1𝑏1𝑇 2 − 𝑐2𝑇 (𝐼 −
𝑠 + 𝛿𝜎1

𝑑1
) − 𝑐3𝑇 (𝑁 − 1

𝑏2
) + 𝑐5𝑇𝐹

)

+
(

𝑁 − 1
𝑏2

)(

𝑟2(𝑁 − 1
𝑏2

)(
1 −𝑁 − 1

𝑏2
𝑁

) − 𝑐4𝑇
)

+
(

−𝑟3𝑏3𝐹 2 − 𝑐6𝑇𝐹
)

+
(

𝑟1𝑇 − 𝑐2𝑇 (
𝑠 + 𝛿𝜎1

𝑑1
) − 𝑐3𝑇

1
𝑏2

− 𝛾𝑇
)

+
(

𝑟3𝐹 − 𝛽𝐹
)

Hence,

𝑑𝑉
𝑑𝑡

= −𝑌 𝑇𝑀𝑌 − 𝑃 𝑇 𝑌 −𝑄𝑇 𝑌 , (11)

here,

𝑇 = [𝐼 − 𝐼 ′2, 𝑇 ,𝑁 −𝑁 ′
2, 𝐹 ], 𝑃 𝑇 =

[

0,−𝑟1 + 𝑐2
𝑠 + 𝛿𝜎1

𝑑1
+ 𝑐3

1
𝑏2

+ 𝛾, 0, 0
]

,

𝑇 =
[

0, 0, 0,−𝑟3 + 𝛽
]

,

nd

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑑1
𝐼

1
2

(

𝑐1 + 𝑐2 −
𝜌

𝛼+𝑇+𝜇𝐹

)

0 0

1
2

(

𝑐1 + 𝑐2 −
𝜌

𝛼+𝑇+𝜇𝐹

)

𝑟1𝑏1
𝑐4
2

𝑐6−𝑐5
2

0 𝑐4
2

1 − 1
𝑁

+ 1
𝑁𝑏2

0

0 𝑐6−𝑐5
2

0 𝑟3𝑏3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By noting the second component of the vector 𝑃 and fourth component
of the vector 𝑄, we must have

−𝑟1 + 𝑐2
𝑠 + 𝛿𝜎1

𝑑1
+ 𝑐3

1
𝑏2

+ 𝛾 > 0 ⟹ 𝑟1 < 𝑐2
𝑠 + 𝛿𝜎1

𝑑1
+ 𝑐3

1
𝑏2

+ 𝛾,

and

−𝑟3 + 𝛽 > 0 ⟹ 𝑟3 < 𝛽.

for which 𝑃 𝑇 𝑌 > 0 and 𝑄𝑇 𝑌 > 0.
Furthermore, by considering the values of parameter set 1 given in

Section ‘‘Numerical simulation’’, and if 𝐼 ≤ 𝑠
𝑑1

, 𝑇 ≤ 1
𝑏1

, 𝑁 ≤ 1
𝑏2

and
𝐹 < 1

𝑏3
, then all the minors of the matrix 𝑀 are positive (all eigenvalues

of 𝑀 are also positive) and so 𝑌 𝑇𝑀𝑌 > 0. Now, it is clear that 𝑑𝑉
𝑑𝑡 < 0.

Hence, we establish the following theorem:

Theorem 1. The disease-free equilibrium 𝐸′
2(𝐼

′
2 = 𝑠+𝛿𝜎1

𝑑1
, 𝑇 ′

2 = 0, 𝑁 ′
2 =

1 , 𝐹 ′ = 0) will be globally asymptotically stable if the following conditions
𝑏2 2
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5

u
W

hold:

𝑟1 < 𝑐2
𝑠 + 𝛿𝜎1

𝑑1
+ 𝑐3

1
𝑏2

+ 𝛾, 𝑟3 < 𝛽, 𝐼 ≤ 𝑠
𝑑1

, 𝑇 ≤ 1
𝑏1

,

𝑁 ≤ 1
𝑏2

and 𝐹 < 1
𝑏3

.

. Optimal control

In this section, we apply optimal control theory to the system
nder treatment to look for an optimal drug administration protocol.
e consider the modified model (2) with 𝛿(𝑡), 𝛾(𝑡) and 𝛽(𝑡) as time-

dependent treatment control functions that should be minimized in
order to reduce the spread of the disease. The objective function that
must be minimized is given below:

 (𝛿, 𝛾, 𝛽)

= ∫

𝑇𝑓

0
[𝛼1𝑇 (𝑡) + 𝛼2𝐹 (𝑡) − 𝛼3𝐼(𝑡) − 𝛼4𝑁(𝑡) + 𝛼5𝛿

2(𝑡) + 𝛼6𝛾
2(𝑡) + 𝛼7𝛽

2(𝑡)]𝑑𝑡,

(12)

where 𝑇𝑓 is the final time and 𝛼𝑖, 𝑖 = 1,… , 7 are relative weights to
balance each term in the integrand in (12) and must be determined to
reduce the growth of diseased cells (tumor and fat cells) and increase
the number of immune and normal cells. Thus, we seek an optimal
control 𝛿∗, 𝛾∗ and 𝛽∗ such that

 (𝛿∗, 𝛾∗, 𝛽∗) = min{ (𝛿, 𝛾, 𝛽)| (𝛿, 𝛾, 𝛽) ∈ 𝛥},

where the control set 𝛥 is as

𝛥 = {(𝜂1, 𝜂2, 𝜂3)| 𝜂𝑖(𝑡) is Lebesgue measurable, 0 ≤ 𝜂𝑖 ≤ 𝜂𝑖max < 1,

𝑖 = 1, 2, 3}. (13)

If 𝛺(𝑡, 𝛹 , 𝑢) denotes the integrand of  (𝛿, 𝛾, 𝛽), i.e.

𝛺(𝑡, 𝛹 , 𝑢) = 𝛼1𝑇 (𝑡)+𝛼2𝐹 (𝑡)−𝛼3𝐼(𝑡)−𝛼4𝑁(𝑡)+𝛼5𝛿21 (𝑡)+𝛼6𝛾
2
1 (𝑡)+𝛼7𝛽

2
1 (𝑡), (14)

where 𝛹 = (𝐼, 𝑇 ,𝑁, 𝐹 ) and 𝑢 = (𝛿1, 𝛾1, 𝛽1), we must show that 𝛺 is a
function bounded below. This will ensure that, 𝛺 will have a minimum.
For this purpose, first we investigate the convexity of 𝛺 on 𝛥.

Suppose that 𝑢, 𝑣 are distinct elements of 𝛥 and 0 ≤ 𝜌 ≤ 1. We show
that the following inequality holds

(1 − 𝜌)𝛺(𝑡, 𝛹 , 𝑢) + 𝜌𝛺(𝑡, 𝛹 , 𝑣) ≥ 𝛺(𝑡, 𝛹 , (1 − 𝜌)𝑢 + 𝜌𝑣), (15)

where 𝑢, 𝑣 are control vectors. Substituting (14) into (15) we get

(1 − 𝜌)𝛺(𝑡, 𝛹 , 𝑢) + 𝜌𝛺(𝑡, 𝛹 , 𝑣) −𝛺(𝑡, 𝛹 , (1 − 𝜌)𝑢 + 𝜌𝑣)

= (1 − 𝜌)
(

𝛼1𝑇 + 𝛼2𝐹 − 𝛼3𝐼 − 𝛼4𝑁 + 𝛼5𝛿
2
1 + 𝛼6𝛾

2
1 + 𝛼7𝛽

2
1

)

+ 𝜌
(

𝛼1𝑇 + 𝛼2𝐹 − 𝛼3𝐼 − 𝛼4𝑁 + 𝛼5𝛿
2
1 + 𝛼6𝛾

2
1 + 𝛼7𝛽

2
1

)

−
(

𝛼1𝑇 + 𝛼2𝐹 − 𝛼3𝐼 − 𝛼4𝑁 + 𝛼5((1 − 𝜌)𝛿1 + 𝜌𝛿2)2

+ 𝛼6((1 − 𝜌)𝛾1 + 𝜌𝛾2)2 + 𝛼7((1 − 𝜌)𝛽1 + 𝜌𝛽2)2
)

= 𝛼5𝜌(1 − 𝜌)(𝛿1 − 𝛿2)2 + 𝛼6𝜌(1 − 𝜌)(𝛾1 − 𝛾2)2 + 𝛼7𝜌(1 − 𝜌)(𝛽1 − 𝛽2)2

≥ 0.

Thus, inequality (15) holds and

𝛺(𝑡, 𝛹 , 𝑢) = 𝛼1𝑇 + 𝛼2𝐹 − 𝛼3𝐼 − 𝛼4𝑁 + 𝛼5𝛿
2
1 + 𝛼6𝛾

2
1 + 𝛼7𝛽

2
1

≥ 𝛼5𝛿
2
1 + 𝛼6𝛾

2
1 + 𝛼7𝛽

2
1 ≥ 𝜏(𝛿21 + 𝛾21 + 𝛽21 ),

where 𝜏 = min{𝛼6, 𝛼7, 𝛼8}. This shows that 𝜏(𝛿21 + 𝛾21 + 𝛽21 ) can be a
lower bound for 𝛺(𝑡, 𝛹 , 𝑢). Therefore, there exists an optimal control

∗ ∗ ∗
6

(𝛿 , 𝛾 , 𝛽 ) to which 𝛺(𝑡, 𝛹 , 𝑢) can be minimized.
Now, we define the Hamiltonian function of the system (2) as
follows:

 =𝛼1𝑇 + 𝛼2𝐹 − 𝛼3𝐼 − 𝛼4𝑁 + 𝛼5𝛿
2 + 𝛼6𝛾

2 + 𝛼7𝛽
2

+ 𝜆1

(

𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿(𝑡)𝜎1

)

+ 𝜆2

(

𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾(𝑡)𝑇
)

+ 𝜆3

(

𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁
)

+ 𝜆4

(

𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽(𝑡)𝐹
)

,

(16)

where 𝜆𝑖, 𝑖 = 1,… , 4 are adjoint variables (Lagrange multipliers).

Theorem 2. Suppose that (𝛿∗, 𝛾∗, 𝛽∗) ∈ 𝛥 is an optimal control and
the corresponding state variables are (𝐼, 𝑇 ,𝑁, 𝐹 ). Then, there exist adjoint
variables 𝜆𝑖, 𝑖 = 1,… , 4 that satisfy the following equations:
𝑑𝜆1
𝑑𝑡

= 𝛼3 − 𝜆1

(

𝜌𝑇
𝛼 + 𝑇 + 𝜇𝐹

− 𝑐1𝑇 − 𝑑1

)

+ 𝜆2𝑐2𝑇 ,

𝑑𝜆2
𝑑𝑡

= −𝛼1 − 𝜆1

(

𝜌𝐼(𝛼 + 𝜇𝐹 )
(𝛼 + 𝑇 + 𝜇𝐹 )2

− 𝑐1𝐼
)

− 𝜆2(𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐼 − 𝑐3𝑁 + 𝑐5𝐹 − 𝛾(𝑡)) + 𝜆3𝑐4𝑁 + 𝜆4𝑐6𝐹 ,
𝑑𝜆3
𝑑𝑡

= 𝛼4 + 𝜆2𝑐3𝑇 − 𝜆3(𝑟2 − 2𝑟2𝑏2𝑁 − 𝑐4𝑇 ),

𝑑𝜆4
𝑑𝑡

= −𝛼2 + 𝜆1
𝜇𝜌𝐼𝑇

(𝛼 + 𝑇 + 𝜇𝐹 )2
− 𝜆2𝑐5𝑇 − 𝜆4(𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇 − 𝛽(𝑡)),

with the transversality conditions 𝜆𝑖(𝑇𝑓 ) = 0, 𝑖 = 1,… , 4. Furthermore, the
optimal values of control variables are as follows:

𝛿∗ = min
{

max
{

0,−
𝜆1𝜎1
2𝛼5

}

, 1
}

,

𝛾∗ = min
{

max
{

0,
𝜆2𝑇
2𝛼6

}

, 1
}

,

𝛽∗ = min
{

max
{

0,
𝜆4𝐹
2𝛼7

}

, 1
}

.

Proof. Based on Hamiltonian function (16) and the Pontryagin’s max-
imum principle [36–39], the Hamiltonian equations are obtained as
𝑑𝜆1
𝑑𝑡

= − 𝜕
𝜕𝐼

= 𝛼3 − 𝜆1

(

𝜌𝑇
𝛼 + 𝑇 + 𝜇𝐹

− 𝑐1𝑇 − 𝑑1

)

+ 𝜆2𝑐2𝑇 ,

𝑑𝜆2
𝑑𝑡

= − 𝜕
𝜕𝑇

= −𝛼1 − 𝜆1

(

𝜌𝐼(𝛼 + 𝜇𝐹 )
(𝛼 + 𝑇 + 𝜇𝐹 )2

− 𝑐1𝐼
)

− 𝜆2(𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐼 − 𝑐3𝑁 + 𝑐5𝐹 − 𝛾(𝑡)) + 𝜆3𝑐4𝑁 + 𝜆4𝑐6𝐹 ,
𝑑𝜆3
𝑑𝑡

= − 𝜕
𝜕𝑁

= 𝛼4 + 𝜆2𝑐3𝑇 − 𝜆3(𝑟2 − 2𝑟2𝑏2𝑁 − 𝑐4𝑇 ),

𝑑𝜆4
𝑑𝑡

= − 𝜕
𝜕𝐹

= −𝛼2 + 𝜆1
𝜇𝜌𝐼𝑇

(𝛼 + 𝑇 + 𝜇𝐹 )2

− 𝜆2𝑐5𝑇 − 𝜆4(𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇 − 𝛽(𝑡)),

where 𝜆𝑖(𝑡), 𝑖 = 1,… , 4 are called adjoint functions and transversality
conditions are 𝜆𝑖(𝑇𝑓 ) = 0, 𝑖 = 1,… , 4. The optimal control functions are
derived as follows:
𝜕
𝜕𝛿

= 0 ⇒ 2𝛼5𝛿 + 𝜆1𝜎1 = 0 ⇒ 𝛿 = −
𝜆1𝜎1
2𝛼5

,

𝜕
𝜕𝛾

= 0 ⇒ 2𝛼6𝛾 − 𝜆2𝑇 = 0 ⇒ 𝛾 =
𝜆2𝑇
2𝛼6

,

𝜕
𝜕𝛽

= 0 ⇒ 2𝛼7𝛽 − 𝜆4𝐹 = 0 ⇒ 𝛽 =
𝜆4𝐹
2𝛼7

.

(17)

Using the bounds of the control variables, we have

𝛿∗ =

⎧

⎪

⎪

⎨

⎪

⎪

− 𝜆1𝜎1
2𝛼5

, if 0 < − 𝜆1𝜎1
2𝛼5

< 1,

0, if − 𝜆1𝜎1
2𝛼5

≤ 0,

1, if − 𝜆1𝜎1 ≥ 1,

⎩ 2𝛼5



Results in Physics 42 (2022) 105963K. Dehingia et al.

𝛽
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w
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W

p
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w
v
a

𝑟
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𝛾∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆2𝑇
2𝛼6

, if 0 < 𝜆2𝑇
2𝛼6

< 1,

0, if 𝜆2𝑇
2𝛼6

≤ 0,

1, if 𝜆2𝑇
2𝛼6

≥ 1,

∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆4𝐹
2𝛼7

, if 0 < 𝜆4𝐹
2𝛼7

< 1,

0, if 𝜆4𝐹
2𝛼7

≤ 0,

1, if 𝜆4𝐹
2𝛼7

≥ 1.

y means of a new notation, we obtain

∗ = min
{

max
{

0,−
𝜆1𝜎1
2𝛼5

}

, 1
}

, 𝛾∗ = min
{

max
{

0,
𝜆2𝑇
2𝛼6

}

, 1
}

,

∗ = min
{

max
{

0,
𝜆4𝐹
2𝛼7

}

, 1
}

.
(18)

he second-order partial derivatives of the terms in the LHS of Eqs. (17)
ith respect to 𝛿, 𝛾 and 𝛽

𝜕2
𝜕𝛿2

= 2𝛼5,
𝜕2
𝜕𝛾2

= 2𝛼6,
𝜕2
𝜕𝛽2

= 2𝛼7, which are positive.

This implies that the optimal problem is minimized at 𝛿, 𝛾, 𝛽.
We get the following optimal system:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝐼
𝑑𝑡

=𝑠 +
𝜌𝐼𝑇

𝛼 + 𝑇 + 𝜇𝐹
− 𝑐1𝑇 𝐼 − 𝑑1𝐼 + 𝛿∗𝜎1,

𝑑𝑇
𝑑𝑡

=𝑟1𝑇 (1 − 𝑏1𝑇 ) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 + 𝑐5𝑇𝐹 − 𝛾∗𝑇 ,

𝑑𝑁
𝑑𝑡

=𝑟2𝑁(1 − 𝑏2𝑁) − 𝑐4𝑇𝑁,

𝑑𝐹
𝑑𝑡

=𝑟3𝐹 (1 − 𝑏3𝐹 ) − 𝑐6𝑇𝐹 − 𝛽∗𝐹 ,

(19)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝜆1
𝑑𝑡

=𝛼3 − 𝜆1

(

𝜌𝑇
𝛼 + 𝑇 + 𝜇𝐹

− 𝑐1𝑇 − 𝑑1

)

+ 𝜆2𝑐2𝑇 ,

𝑑𝜆2
𝑑𝑡

= − 𝛼1 − 𝜆1

(

𝜌𝐼(𝛼 + 𝜇𝐹 )
(𝛼 + 𝑇 + 𝜇𝐹 )2

− 𝑐1𝐼
)

− 𝜆2(𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐼 − 𝑐3𝑁 + 𝑐5𝐹 ,

−𝛾∗) + 𝜆3𝑐4𝑁 + 𝜆4𝑐6𝐹 ,
𝑑𝜆3
𝑑𝑡

=𝛼4 + 𝜆2𝑐3𝑇 − 𝜆3(𝑟2 − 2𝑟2𝑏2𝑁 − 𝑐4𝑇 ),

𝑑𝜆4
𝑑𝑡

= − 𝛼2 + 𝜆1
𝜇𝜌𝐼𝑇

(𝛼 + 𝑇 + 𝜇𝐹 )2
− 𝜆2𝑐5𝑇 − 𝜆4(𝑟3 − 2𝑟3𝑏3𝐹 − 𝑐6𝑇 − 𝛽∗),

(20)

ubject to the conditions

(0) = 𝐼0, 𝑇 (0) = 𝑇0, 𝑁(0) = 𝑁0, 𝐹 (0) = 𝐹0, 𝜆𝑖(𝑇𝑓 ) = 0,

= 1,… , 4.

. Numerical simulation

In mathematical modeling, it is essential to verify theoretical results
ith the help of numerical simulations. So, in this section, we present
umerical simulations of some essential theoretical results found in
ur investigation and provide practical explanations of those results.
ll the numerical verifications have been done using MATLAB-R2016a,
olfram MATHEMATICA-12.3, and Maple-2021 software.
We consider parameters and units as arbitrary and choose two

arameter sets, one having a low immune response and the other
aving a high immune response, for the numerical simulation of the
ithout treatment model (3). All the parameter values and the initial
alues of the cell populations (𝐼0 = 0, 𝑇0 = 0.0001, 𝑁0 = 1, and 𝐹0 = 0.8)
re taken from the paper [31].
7

Fig. 1. Time series plot for the parameter set 1 with low immune response.

Parameter set 1: 𝑠 = 0.125; 𝜌 = 0.75; 𝛼 = 0.3; 𝜇 = 0.8; 𝑐1 = 1; 𝑑1 = 0.2;
1 = 1.5; 𝑏1 = 1; 𝑐2 = 0.1; 𝑐3 = 1; 𝑐5 = 0.1; 𝑟2 = 1; 𝑏2 = 1; 𝑐4 = 1; 𝑟3 = 0.1;
3 = 1.5; 𝑐6 = 0.1.

Parameter set 2: 𝑠 = 1.135; 𝜌 = 0.75; 𝛼 = 0.3; 𝜇 = 0.8; 𝑐1 = 1; 𝑑1 = 0.2;
1 = 1.5; 𝑏1 = 1; 𝑐2 = 0.1; 𝑐3 = 1; 𝑐5 = 0.1; 𝑟2 = 1; 𝑏2 = 1; 𝑐4 = 1; 𝑟3 = 0.1;
3 = 1.5; 𝑐6 = 0.1.

For the parameter set 1, there exists four biologically feasible equi-
ibrium points for the system (3): See Box III.

The stability of the above four equilibria is as follows:

• The eigenvalues corresponding to disease-free equilibrium 𝐸2 are
−0.2000, −1.0000, 0.0437, 0.1000. It indicates that 𝐸2 is a saddle-
type critical point. Hence, around this point, the system shows
unstable behavior. This equilibrium is regarded as a healthy
equilibrium as there are no tumor and fat cells that can generate
abnormal cells.

• Corresponding to the equilibria 𝐸3, the eigenvalues are −0.2000,
−0.1001, −1.0000, 0.5042; which indicates that 𝐸3 is a saddle
point, and the system is unstable around 𝐸3. As fat cells are
present at this equilibrium, there is a chance of the birth of
abnormal cells.

• The equilibrium 𝐸7 is a state where immune-tumor-normal cells
co-exist. The eigenvalues associated with 𝐸7 are −1.4422, −0.5678,
−0.0124, 0.0043; which corresponds to an unstable saddle point.
At this co-axial point, three types of cells compete with each other
to survive, viz. immune-tumor-normal.

• The interior co-axial equilibrium 𝐸8 is associated with eigenval-
ues −1.4883, −0.5815, −0.0109, −0.0045; which implies that the
point 𝐸8 is a stable node. It is to be noted that the point 𝐸8
remains stable as long as the immune cells co-exist in the system
up to a certain level. Fig. 1 depicts this situation where all the
considered cell populations co-exist at 𝐸8, and the tumor cell
proliferates at a faster rate with its maximum carrying capacity.
The system is stable at co-axial equilibrium 𝐸8; however, due
to inadequate immune responses of the system, the number of
immune and normal cells gets reduced, and it indicates that if the
immune cell population gets further reduced, the system becomes
unstable at co-axial equilibrium 𝐸8. Therefore, in this case, the
patient needs external input to recover the system.
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𝐸2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼2 = 0.6250

𝑇2 = 0

𝑁2 = 1

𝐹2 = 0,

𝐸3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼3 = 0.6250

𝑇3 = 0

𝑁3 = 1

𝐹3 = 0.6667,

𝐸7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 = 0.2132

𝑇̃ = 0.9574

𝑁̃ = 0.0426

𝐹 = 0,

𝐸8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 = 0.2083

𝑇̂ = 0.9632

𝑁̂ = 0.0368

𝐹 = 0.0245.

Box III.
Fig. 2. Time series plot for the parameter set 2 with high immune response.
e
i

For the parameter set 2, there exists two biologically feasible equilib-
rium points for the system (3):

𝐸2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼2 = 5.6750

𝑇2 = 0

𝑁2 = 1

𝐹2 = 0,

𝐸3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼3 = 5.6750

𝑇3 = 0

𝑁3 = 1

𝐹3 = 0.6667.

The nature of the stability of the above two equilibria is as follows:

• The eigenvalues corresponding to disease-free equilibrium 𝐸2 are
−0.2000, −1.0000, −0.0675, 0.1000; showing that it is an unstable
saddle point. Hence, the healthy equilibrium point is not stable.

• The immune-normal-fat co-axial equilibrium 𝐸3 is associated with
eigenvalues −0.2000, −0.1001, −1.0000, −0.0008; which indicates
that it is a asymptotically stable node. From Fig. 2, it can be
observed that the tumor cells die off over a long period, whereas
the normal and immune cells are stable at their required level
in the presence of fat cells. Biologically, it implies that a system
having high immunity may be able to clear the tumor from the
system for a long time interval, and the system may become
disease-free.

We have observed from Figures 1 and 2 that the system with a high
immune response may suppress the tumor in contrast to the system
with an inadequate immune response. Hence, for the simulation of the
treatment case, we consider parameter set 1, which has low immunity,
8

to understand the effect of external treatments. We have considered
three cases: (i) 𝛿 > 0, 𝛾 = 0, 𝛽 = 0, (ii) 𝛿 > 0, 𝛾 > 0, 𝛽 = 0, and (iii)
𝛿 > 0, 𝛾 > 0, 𝛽 > 0 along with 𝜎1 = 0.3.

Case (i) 𝛿 > 0, 𝛾 = 0, 𝛽 = 0:
For the value of treatment parameter 𝛿 = 0.25, the system (7)

xhibits four biologically valid equilibrium points, and these are given
n Box IV.

The stability of the above four equilibria is as follows:

• The eigenvalues related to 𝐸′
2 are −0.2000, −1.0000, 0.4000,

0.1000. Hence, 𝐸′
2 is unstable saddle type.

• As corresponding to the equilibrium 𝐸′
3, the eigenvalues are

−0.2000, 0.4667, −1.0000, −0.1000; the equilibrium 𝐸′
3 is an un-

stable saddle point.
• The eigenvalues related to 𝐸′

7 where immune-tumor-normal co-
exist are 0.0071, −1.3771, −0.5230, −0.1262. Hence, the equilib-
rium 𝐸′

7 is also an unstable saddle point.
• The equilibrium 𝐸′

8 is associated with eigenvalues −1.4796,
−0.5574, −0.0168, −0.0076. Therefore, the equilibrium 𝐸′

8 is an
asymptotically stable node.

For the value of treatment parameter 𝛿 = 0.50, the system (7) exhibits
four biologically valid equilibrium points and these are given in Box V.

The stability of the above four equilibria is as follows:

• The eigenvalues related to 𝐸′
2 are −0.2000, 0.3625, −1.0000,

0.1000, which corresponds to an unstable saddle point.
• The equilibrium 𝐸′

3 is associated with eigenvalues −0.2000,
0.4292, −1.0000, −0.1000; indicating an unstable saddle type.
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𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.3559

𝑇̃ ′ = 0.9288

𝑁̃ ′ = 0.0712

𝐹 ′ = 0,

𝐸′
8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.3415

𝑇̂ ′ = 0.9397

𝑁̂ ′ = 0.0603

𝐹 ′ = 0.0402.

Box IV.
𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1.3750

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1.3750

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.5139

𝑇̃ ′ = 0.8972

𝑁̃ ′ = 0.1028

𝐹 ′ = 0,

𝐸′
8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.4821

𝑇̂ ′ = 0.9149

𝑁̂ ′ = 0.0851

𝐹 ′ = 0.0567.

Box V.
𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1.7500

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1.7500

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.6929

𝑇̃ ′ = 0.8614

𝑁̃ ′ = 0.1386

𝐹 ′ = 0,

𝐸′
8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.6311

𝑇̂ ′ = 0.8886

𝑁̂ ′ = 0.1114

𝐹 ′ = 0.0742.

Box VI.
• Corresponding to 𝐸′
7, the eigenvalues are 1.4477, −0.5066,

−0.0294, 0.0103, so, the critical point is again of unstable saddle
type.

• The interior co-axial equilibrium 𝐸′
8 is associated with eigen-

values −1.4696 −0.5339, −0.0243, −0.0085. Hence, around this
equilibrium, the system (7) behaves in an asymptotically stable
way.

For the value of treatment parameter 𝛿 = 0.75, the system (7) exhibits
four biologically valid equilibrium points and these are given in Box VI.

The stability of the above four equilibria is as follows:

• The eigenvalues corresponding to the equilibrium 𝐸′
2 are −0.2000,

0.3250, −1.0000, 0.1000; which corresponds to an unstable saddle
point.

• Corresponding to the equilibrium 𝐸′
3, the eigenvalues are −0.2000,

0.3917, −1.0000, −0.1000; indicating to an unstable saddle point.
• The equilibrium 𝐸′

7 is associated with eigenvalues −1.4373,
−0.4635, −0.0349, 0.0139. Hence the equilibrium is of unstable
saddle type.

• The eigenvalues corresponding to 𝐸′
8 are −1.4575, −0.5109,

−0.0258, −0.0158. Therefore, the system (7) behaves as an asymp-
totically stable system around this equilibrium.

From Fig. 3, it is clear that for the treatment parameter values of
𝛿 = 0.25, 0.5, and 0.75, all four cell populations exist and compete
to survive and stabilize at 𝐸8. However, we observed that if we use
only IL-2 therapy, the system could not clear the tumor cells. Hence,
we require more external input. So, we introduce another external
treatment parameter 𝛾 for ACI therapy in the following case.

Case (ii) 𝛿 > 0, 𝛾 > 0, 𝛽 = 0: Now, we will observe the dynamics of
the system (7) in the presence of two treatment parameters, 𝛿 and 𝛾.
9

For the treatment parameters 𝛿 = 0.25 and 𝛾 = 0.25, there exist four
equilibrium points as given in Box VII. The stability of the above four
equilibria is as follows:

• The equilibrium 𝐸′
2 is associated with eigenvalues −0.2000,

0.1500, −1.0000, 0.1000, indicating that it is an unstable saddle
point.

• The immune-normal-fat co-existing critical point 𝐸′
3 is associ-

ated with eigenvalues −0.2000, 0.2167, −1.0000, −0.1000; which
corresponds to an unstable saddle point.

• Corresponding to 𝐸′
7, eigenvalues are −0.0796 ± 0.0682𝑖, −1.0068,

0.0879 which also indicates that 𝐸′
7 is of unstable saddle type.

• Corresponding to 𝐸′
8, eigenvalues are −0.0680 ± 0.0306𝑖, −1.1255,

−0.3462. Hence, around 𝐸′
8 the system (7) shows the nature of

an asymptotically stable inward spiral. Graphically, the existence
and stability of the equilibrium 𝐸′

8 can be observed from Fig. 4.
Thus Fig. 4 demonstrates that for the parameter set 1 with treat-
ment parameters 𝛿 = 0.25 and 𝛾 = 0.25, the system could not
clear the tumor at the required level, and the system still became
tumor-persistent.

For the values of treatment parameters 𝛿 = 0.5 and 𝛾 = 0.25, there are
four biologically relevant equilibrium points as given in Box VIII. The
stability of the above four equilibria is as follows:

• The eigenvalues corresponding to 𝐸′
2 are −0.2000, 0.1125,

−1.0000, 0.1000, showing the critical point is of unstable addle
type.

• The equilibrium 𝐸′
3 has corresponding eigenvalues as −0.2000,

0.1792, −1.0000, −0.1000; which indicates a saddle point.
• The eigenvalues associated with the critical point 𝐸′

7 are −0.0803±
0.0811𝑖, −1.0017, 0.0930; which corresponds to a saddle point.

• The co-existing equilibrium point 𝐸′
8 has corresponding eigenval-
ues as −1.0996, −0.2098, −0.0333 ± 0.0274𝑖 which correspond to
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Fig. 3. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.25, 0.5 and 0.75.
𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 1.8959

𝑇̃ ′ = 0.1208

𝑁̃ ′ = 0.8792

𝐹 ′ = 0,

𝐸′
8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.6118

𝑇̂ ′ = 0.4509

𝑁̂ ′ = 0.5492

𝐹 ′ = 0.3661.

Box VII.
𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1.3750

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1.3750

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 2.1489

𝑇̃ ′ = 0.0702

𝑁̃ ′ = 0.9298

𝐹 ′ = 0,

𝐸′
8 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 0.8988

𝑇̂ ′ = 0.4002

𝑁̂ ′ = 0.5998

𝐹 ′ = 0.3999.

Box VIII.
Fig. 4. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.25 and
𝛾 = 0.25.

a stable inward spiral. Graphically, the existence and stability
of the equilibrium 𝐸′

8 can be observed from Fig. 5. Thus Fig. 5
10
Fig. 5. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.5 and
𝛾 = 0.25.

demonstrates that for the parameter set 1 with treatment param-
eter 𝛿 = 0.5 and 𝛾 = 0.25, the system could not clear the tumor at

the required level, and the system still becomes tumor-persistent.
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Fig. 6. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.75 and 𝛾 = 0.5.
or the values of treatment parameters 𝛿 = 0.75 and 𝛾 = 0.5, there are
wo biologically relevant equilibrium points:

′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1.7500

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′3 = 1.7500

𝑇 ′
3 = 0

𝑁 ′
3 = 1

𝐹 ′
3 = 0.6667.

he stability of the above two equilibria is as follows:

• The critical point 𝐸′
2 is associated with eigenvalues −0.2000,

−0.1750, −1.0000, 0.1000; which corresponds to an unstable sad-
dle point.

• The corresponding eigenvalues of 𝐸′
3 are −0.2000, −0.1083,

−1.0000, −0.1000; which indicates a stable node. Graphically, the
existence and stability of the equilibrium 𝐸′

3 can be observed from
Fig. 6. Thus, Fig. 6 demonstrates that for the parameter set 1 with
treatment parameter 𝛿 = 0.75 and 𝛾 = 0.5, the system could clear
the tumor at the required level, and the system would still become
tumor-free. However, at this point, it is important to note that
the number of fat cells remains high, which may cause a rebirth
of the tumor cells in the system. Hence, we may concentrate on
controlling fat cells.

From Fig. 4, Figs. 5 and 6, it can be concluded that the increase
n the treatment parameters 𝛿 and 𝛾 increases the tumor-reducing
apability of the system. The system can eradicate tumors totally for
alues of 𝛿 = 0.75 and 𝛾 = 0.5. However, a deficiency persists as the
at cells are still present, which can cause a reborn tumor. Hence, we
ntroduced another external parameter, 𝛽, for a nutritional diet.

Now, we will observe the dynamics of the system (7) where all three
reatment parameters 𝛿, 𝛾, and 𝛽 are present.

Case (iii) 𝛿 > 0, 𝛾 > 0, 𝛽 > 0:
Considering the values of treatment parameters 𝛿 = 0.25, 𝛾 = 0.25

nd 𝛽 = 0.25, there exist two biologically relevant equilibria:

′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0,

𝐸′
7 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′ = 1.8959

𝑇̃ ′ = 0.1208

𝑁̃ ′ = 0.8792

𝐹 ′ = 0.
11

he stability of the above two equilibria is as follows:
• The equilibrium point 𝐸′
2 has corresponding eigenvalues as

−0.2000, 0.1500, −1.0000, −0.1500; which implies that 𝐸′
2 is an

unstable saddle point.
• The eigenvalues correspond to 𝐸′

7 are −0.0796 ± 0.0682𝑖, −1.0068,
−0.1621; which corresponds to a stable inward spiral. The graph-
ical representation of the existence and stability of the system
around the equilibrium 𝐸′

7 is shown in Fig. 7. It can be observed
that the tumor cells are still present in the system, whereas the
fat cell population becomes zero.

For the values of treatment parameter 𝛿 = 0.5, 𝛾 = 0.5, and 𝛽 = 0.25,
there are only one biologically relevant equilibrium point:

𝐸′
2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

𝐼 ′2 = 1.3750

𝑇 ′
2 = 0

𝑁 ′
2 = 1

𝐹 ′
2 = 0.

• The equilibrium point 𝐸′
2 has corresponding eigenvalues as

−0.2000, −0.1375, −1.0000, −0.1500; which correspond to a stable
node. The graphical representation of the existence and stability
of the system around the equilibrium 𝐸′

2 is shown in Fig. 8. It can
be observed that both tumor cells and fat cells population become
zero and the other healthy cells are stable at their maximum
required level.

It is observed from figures 7 and 8 that with the use of all three external
treatment inputs, the system gains more strength for tumor reducibility.
Also, for the values of 𝛿 = 0.5, 𝛾 = 0.5, and 𝛽 = 0.25, the body acquires
its healthy stage at which no tumor and fat cells are present.

Fig. 9 reveals that all trajectories of the system (7) converge to
the disease-free equilibrium 𝐸′

2(1.3750, 0, 1, 0), which suggests that it is
globally asymptotically stable. Furthermore, it means that after apply-
ing an optimum amount of all three treatments, the patient’s recovery is
permanent, and the chances of the rebirth of the tumor are negligible.

The results and simulations of the optimal system are obtained
from an iterative forward–backward algorithm based on the fourth-
order Runge–Kutta method for 𝑇𝑓 = 100, ℎ = 0.01, 𝐼(0) = 0, 𝑇 (0) =
0.0001, 𝑁(0) = 1, 𝐹 (0) = 0.8, 𝛼1 = 𝛼2 = 200, 𝛼3 = 𝛼4 = 𝛼5 = 1, 𝛼6 =
𝛼 = 100, 𝜆 (𝑇 ) = 0, 𝑖 = 1, 2, 3, 4, and the initial guesses for the control
7 𝑖 𝑓
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Fig. 7. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.25, 𝛾 = 0.25 and 𝛽 = 0.25.
Fig. 8. Time series plot for the parameter set 1 with treatment parameter 𝛿 = 0.5, 𝛾 = 0.5 and 𝛽 = 0.25.
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arameters as 𝛿∗(0) = 1, 𝛾∗(0) = 0.5, 𝛽∗(0) = 1. The utilized algorithm is
s follows:

tep 1. Choose an initial guess for the control parameters 𝛿∗, 𝛾∗, 𝛽∗.

tep 2. Solve the system (19) using the usual Runge–Kutta method of
he fourth order.

tep 3. From the resultant solutions of system (19), solve system (20)
sing the backward Runge–Kutta method.

tep 4. Update the control parameters 𝛿∗, 𝛾∗, 𝛽∗ using system (18).

tep 5. Continue the procedure iteratively till the convergent solutions
re achieved. In Fig. 10, we present the time series plot of immune cells
𝐼), tumor cells (𝑇 ), normal cells (𝑁), and fat cells (𝐹 ) with control of all
he external treatment parameters. This figure shows that the number of
umor and fat cells is quickly driven to a much lower level. The number
f immune and normal cells increases over time and stabilizes around
required level. Fig. 11 shows that the external input of treatment

arameters 𝛾(𝑡) for ACI-therapy and 𝛽(𝑡) for diet control are initially
igh for a short period and fall rapidly over time.
12
. Conclusion

This study formulated a cancer-obesity-treatment model by consid-
ring four nonlinear differential equations. We first studied the model
n the absence of any treatment. An existence and stability analysis has
een performed. It is observed that immune cells may suppress tumor
rowth with a high immune response rate to tumor cells. However, in
he case of a low immune response rate to the tumor cells, the system
ould not destroy tumor cells; in fact, tumor cells proliferate rapidly.
ence, we introduced an external treatment input to the system. We
xplained the conditions for stability of the equilibria for the case of the
reatment model. Moreover, conditions for global stability at disease-
ree equilibrium 𝐸′

2(𝐼
′
2 = 𝑠+𝛿𝜎1

𝑑1
, 0, 𝑁 ′

2 = 1
𝑏2
, 0) have been derived. To

understand the treatment effect on the system, we considered three
cases: (i) 𝛿 > 0, 𝛾 = 0, 𝛽 = 0, (ii) 𝛿 > 0, 𝛾 > 0, 𝛽 = 0 and (iii) 𝛿 > 0,
> 0, 𝛽 > 0.

• In case (i), it is impossible to eradicate tumors from the body
using only IL-2 therapy.

• In the case of (ii), the combination of IL-2 therapy and ACI
therapy can eradicate the tumor for the values of 𝛿 = 0.75 and
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𝑁

Fig. 9. Parametric plot of the system (7) around the equilibrium 𝐸′

2(1.3750, 0, 1, 0) for 𝛿 = 0.5, 𝛾 = 0.5, 𝛽 = 0.25, using the parameter set 1 and initial values 𝐼(0) = 0, 𝑇 (0) = 0.0001,
(0) = 1, 𝐹 (0) = 0.8.
Fig. 10. Time series plot of the immune cells (𝐼), tumor cells (𝑇 ), normal cells (𝑁), and fat cells (𝐹 ) with control treatment parameter 𝛿(𝑡), 𝛾(𝑡), and 𝛽(𝑡) using parameter set 1.
𝛾 = 0.5. Nevertheless, in this case, fat cells are still present in the
body, which may cause the rebirth of tumor cells in the long run.
So, we introduce the diet parameter to control the growth of the
fat cells.

• In case (iii), it is easily seen that the tumor cells and fat cells
totally vanish from the body in long-term behavior for the values
of treatment parameters 𝛿 = 0.5, 𝛾 = 0.5, and 𝛽 = 0.25. Here, it is
observed that the normal cells oscillate around their maximum
value of 1. This phenomenon is observed due to the overdose
of prescribed treatment. Therefore, to control the oscillation, we
13
control the treatment parameters to reduce the side effects of the
prescribed treatments on healthy cells.

• A control problem is constructed for the treatment model to mini-
mize the cancerous cells during the treatment, keeping the normal
cells above the required level. From Figs. 10 and 11, it can be
concluded that normal cells can be stabilized using control theory
on treatment parameters. Also, from Fig. 11, we obtained the
maximum value of prescribed treatment as 𝛿 = 0.75, 𝛾 = 0.00025,
and 𝛽 = 0.75 for which the tumor cells are reduced optimally. It is
observed that optimal control is much more effective for reducing
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Fig. 11. The optimal control graph for treatment parameters 𝛿(𝑡), 𝛾(𝑡), and 𝛽(𝑡) using the parameter set 1.
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the number of tumor and fat cells, which is the main result of this
paper. Also, early practice of all three treatment controls can lead
to better results for tumor eradication.

We have used arbitrary parameter sets to simulate the model;
t would be better if clinical data sets were used to fit the model.
ime delay in the immune response to the tumor cells also plays an
ssential role in tumor-immune dynamics. So, the readers can extend
he work using the delay factor in the immune response [2,10,40].
nother model refinement would include different immunotherapy
ontrol techniques such as gene therapy, CAR-T cell therapy, and
olecular therapy. Such therapies are extensively studied in [9,19,
1] to find optimal treatment strategies for cancer management. The
odel can further be extended to fractional one using different frac-

ional order derivatives to show their significant dynamical properties
42–45].
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