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A new generalized KdV equation, describing the motions of long waves in shallow water
under the gravity field, is considered in this paper. By adopting a series of well-organized
methods, the Bäcklund transformation, the bilinear form and diverse wave structures of

the governing model are formally extracted. The exact solutions listed in this paper are
categorized as lump-type, complexiton, and soliton solutions. To exhibit the physical
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mechanism of the obtained solutions, several graphical illustrations are given for partic-
ular choices of the involved parameters. As a direct consequence, diverse wave structures

given in this paper enrich the studies on the KdV-type equations.

Keywords: New generalized KdV equation; well-organized methods; Bäcklund transfor-
mation; bilinear form; lump-type; complexiton; and soliton solutions.

PACS numbers: 02.30.Jr, 04.20.Jb

1. Introduction

Partial differential equations (PDEs) emerge in a wide variety of scientific fields

and are capable tools for modeling many phenomena in optical fibers, ion-acoustic

waves, and water waves. One of the most fundamental goals in much of today’s

research is searching for exact solutions to PDEs. Such a goal is crucial because

exact solutions enable researchers to achieve valuable information and more insight

into the phenomena under study. Nowadays, with the advancement of symbolic

packages, several effective methods to find out exact solutions of PDEs such as the

Kudryashov method,1–4 the expa method,5–8 and the modified Jacobi method9–12

have been established. All of these show the importance of finding exact solutions

to PDEs and their dynamical analysis.

Researchers are faced with a variety of exact solutions, such as lump, com-

plexiton, and soliton solutions. Each of these types of exact solutions has its def-

inition and those interested can refer to the papers13–30 for more information. In

the last few decades, such types of exact solutions have been the key subject of

a lot of studies. For example, Sulaiman et al.25 obtained lump solutions of a non-

linear PDE in (3 + 1)-dimensions using a test function. Zhou et al. in Ref. 26

applied an ansatz to derive lump solutions of a 2D Boussinesq-type equation. The

authors of Ref. 27 found complexiton solutions of the KdV equation using the Hirota

method. In a study conducted by Hosseini et al.,28 the Hirota method was used

to retrieve complexiton solutions of a Hirota equation. Wazwaz29 obtained solitons

of the KdV equations using the simplified Hirota method. Recently, the author of

Ref. 30 adopted the simplified Hirota method to acquire solitons of the sinh-Gordon

equations.

The main goal of this paper is to consider the following new generalized KdV

equation describing the motions of long waves in shallow water under the gravity

field

∂u

∂t
+
∂5u

∂x5
+ 15u

∂3u

∂x3
+ 15

∂u

∂x

∂2u

∂x2
+ 45u2

∂u

∂x
+
∂u

∂y
+
∂u

∂z
= 0 (1)

and derive its lump-type, complexiton, and soliton solutions. For those interested,

the (2 + 1)-dimensional version of Eq. (1) was formally proposed by Sun et al. in

Ref. 31. It is noteworthy that Lü et al.32 obtained lump and interaction solutions of

(2 + 1)-dimensional generalized (2DG) KdV equation using the Hirota method. In

another research, Liu33 used an ansatz to derive interaction solutions of the 2DG
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KdV equation. Very recently, Yusuf and Sulaiman in Ref. 34 retrieved lump-periodic

and other exact solutions of the 2DG KdV equation by adopting various methods.

This paper is organized as follows. In Sec. 2, by considering the model, its

Bäcklund transformation and bilinear form are derived. In Sec. 3, by applying sev-

eral well-established methods, diverse wave structures of the model, categorized as

lump-type, complexiton, and soliton solutions, are formally extracted. Besides, to

exhibit the physical mechanism of the obtained solutions, diverse graphical illus-

trations are taken in Sec. 3 for particular choices of the involved parameters. In the

last section, a full discussion of the results is provided.

2. New Generalized KdV Equation: Its Bäcklund

Transformation and Bilinear Form

To arrive at the Bäcklund transformation of the model, the authors utilize the

truncated Painlevé expansion (TPE).35–37 Owing to the TPE, the following solution

to Eq. (1) is considered:

u =
u0
φ2

+
u1
φ

+ u2. (2)

In the above equation, u2 satisfies the model, and u0 and u1 are established later.

Setting Eq. (2) in Eq. (1) and considering the coefficient of φ−7 to zero gives

−720u0

(
∂φ

∂x

)5

− 540u20

(
∂φ

∂x

)3

− 90u30
∂φ

∂x
= 0,

which its solution leads to

u0 = −2

(
∂φ

∂x

)2

.

After taking u0 = −2(∂φ∂x )2 and u2 = 0, and considering the coefficient of φ−6 to

zero, we derive

−360

(
∂φ

∂x

)5
∂2φ

∂x2
+ 180u1

(
∂φ

∂x

)5

= 0.

From the above equation, u1 is gained as

u1 = 2
∂2φ

∂x2
.

Now, u0 = −2(∂φ∂x )2, u1 = 2∂
2φ
∂x2 , and u2 = 0 result in

u = −2

(
∂φ
∂x

)2
φ2

+ 2
∂2φ
∂x2

φ
= 2

∂2 ln(φ)

∂x2
.

It is worth mentioning that the new generalized KdV equation can be expressed in

the operator form as

(DtDx +DxDy +DxDz +D6
x)φ · φ = 0.
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The corresponding bilinear form of the above operator form is in the form

2(φφxt − φxφt) + 2(φφxy − φxφy) + 2(φφxz − φxφz) + 2φφxxxxxx

− 12φxφxxxxx + 30φxxφxxxx − 20φ2xxx = 0. (3)

3. New Generalized KdV Equation: Its Lump-Type,

Complexiton, and Soliton Solutions

In this section, through considering several well-designed methods, diverse wave

structures of the model, categorized as lump-type, complexiton, and soliton solu-

tions, are formally extracted. Besides, to exhibit the physical mechanism of the

obtained solutions, a number of graphical illustrations are taken for particular

choices of the involved parameters.

3.1. Lump-type solution of the model

To retrieve the lump-type solution of the model, an ansatz is adopted as follows:

φ = (a1x+ a2y + a3z + a4t+ a5)2 + (a6x+ a7y + a8z + a9t+ a10)2 + a11, (4)

where ai, i = 1, 2, . . . , 11 are derived later. By inserting Eq. (4) into Eq. (3) and

arranging the terms, we will achieve a nonlinear algebraic system whose solution

leads to

a2 = −a3 − a4, a7 = −a8 − a9.

Now, the following lump-type solution to the model is gained:

u = 2
∂2 ln(φ)

∂x2
,

where

φ = (a1x− (a3 + a4)y + a3z + a4t+ a5)2

+ (a6x− (a8 + a9)y + a8z + a9t+ a10)2 + a11.

The above lump-type solution for a1 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1, a8 = −1,

a9 = 2, a10 = 1, a11 = 1, y = 1, and t = 0 can be written as

u =
8

(x+ z − 1)2 + (x− z)2 + 1
− 2(4x− 2)2

((x+ z − 1)2 + (x− z)2 + 1)2
.

The physical mechanism of the above rational function which is a lump-type wave

has been represented in Fig. 1.
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Fig. 1. (Color online) Lump-type solution for a1 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1, a8 = −1,

a9 = 2, a10 = 1, a11 = 1, y = 1, and t = 0.

3.2. Complexiton solution of the model

To find the complexiton solution of the model, we first introduce

a = a1 + ia2,

b = b1 + ib2,

c = c1 + ic2,

w = w1 + iw2,

p = xt+ xy + xz + x6.

By considering the above assumptions and the following equations:

p(a, b, c, w) = 0,

p(ā, b̄, c̄, w̄) = 0,

a system is generated as follows:

6a51a2 − 20a31a
3
2 + 6a1a

5
2 + a1b2 + a1c2 + a1w2 + a2b1 + a2c1 + a2w1 = 0,

a61 − 15a41a
2
2 + 15a21a

4
2 − a62 + a1b1 + a1c1 + a1w1 − a2b2 − a2c2 − a2w2 = 0,

−6a51a2 + 20a31a
3
2 − 6a1a

5
2 − a1b2 − a1c2 − a1w2 − a2b1 − a2c1 − a2w1 = 0,

a61 − 15a41a
2
2 + 15a21a

4
2 − a62 + a1b1 + a1c1 + a1w1 − a2b2 − a2c2 − a2w2 = 0.

The above system can be solved to derive w1 and w2 as

w1 = −a51 + 10a31a
2
2 − 5a1a

4
2 − b1 − c1,

w2 = −5a41a2 + 10a21a
3
2 − a52 − b2 − c2.
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Fig. 2. (Color online) Complexiton solution for a1 = −1, b1 = −4.95, c1 = −2, a2 = 1, b2 =
−0.75, c2 = −3, y = 1, and t = 0.

The unknown a12 is obtained by adopting the following formula:

a12 = −p(2ia2, 2ib2, 2ic2, 2iw2)

p(2a1, 2b1, 2c1, 2w1)
,

as

a12 = − −64a62 − 4(−5a41a2 + 10a21a
3
2 − a52 − b2 − c2)a2 − 4a2b2 − 4a2c2

64a61 + 2(−2a51 + 20a31a
2
2 − 10a1a42 − 2b1 − 2c1)a1 + 4a1b1 + 4a1c1

.

Now, the complexiton solution to the model is acquired as

u = 2
∂2 ln(φ)

∂x2
, φ = 1 + 2eϑ1 cos(ϑ2) + a12e

2ϑ1 ,

where

ϑ1 = a1x+ b1y + c1z + w1t,

ϑ2 = a2x+ b2y + c2z + w2t,

w1 = −a51 + 10a31a
2
2 − 5a1a

4
2 − b1 − c1,

w2 = −5a41a2 + 10a21a
3
2 − a52 − b2 − c2,

a12 = − −64a62 − 4(−5a41a2 + 10a21a
3
2 − a52 − b2 − c2)a2 − 4a2b2 − 4a2c2

64a61 + 2(−2a51 + 20a31a
2
2 − 10a1a42 − 2b1 − 2c1)a1 + 4a1b1 + 4a1c1

.

The physical mechanism of the above complexiton which is a combination of expo-

nential and trigonometric waves has been shown in Fig. 2 for a1 = −1, b1 = −4.95,

c1 = −2, a2 = 1, b2 = −0.75, c2 = −3, y = 1, and t = 0.
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3.3. Soliton solutions of the model

To construct soliton solutions of the model, the nonlinear terms of Eq. (1) are first

removed. This yields

∂u

∂t
+
∂5u

∂x5
+
∂u

∂y
+
∂u

∂z
= 0. (5)

By assuming the solution of Eq. (5) as

u = eϑi , ϑi = aix+ biy + ciz − wit,

we will obtain

(a5i + bi + ci − wi)e
aix+biy+ciz−wit = 0.

From the above equation, the dispersion relation wi is found as

wi = a5i + bi + ci.

Consequently, we can introduce the following phase variables:

ϑi = aix+ biy + ciz − (a5i + bi + ci)t, i = 1, 2.

Now, the following ansatz:

u = R
∂2 ln(φ)

∂x2
, φ = 1 + ea1x+b1y+c1z−(a51+b1+c1)t,

is inserted into the new generalized KdV equation, yielding R = 2.

Thus, the single soliton to the model is constructed as

u = 2
∂2 ln(φ)

∂x2
,

where

φ = 1 + ea1x+b1y+c1z−(a51+b1+c1)t.

To arrive at the double soliton of the model, the following ansatz:

u = 2
∂2 ln(φ)

∂x2
, φ = 1 + eϑ1 + eϑ2 + a12e

ϑ1+ϑ2 ,

is substituted into the new generalized KdV equation. This leads to the phase shift

as follows:

a12 =
a41 − 3a31a2 + 4a21a

2
2 − 3a1a

3
2 + a42

a41 + 3a31a2 + 4a21a
2
2 + 3a1a32 + a42

.

So, the double soliton to the model is established as

u = 2
∂2 ln(φ)

∂x2
, φ = 1 + eϑ1 + eϑ2 + a12e

ϑ1+ϑ2 ,
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Fig. 3. (Color online) (a) Single soliton for a1 = −2, b1 = 1, c1 = −1, y = 1, and t = 0; (b)

Double soliton for a1 = −1.75, b1 = 0.1, c1 = 0.1, a2 = −1, b2 = 2, c2 = −1, y = 1, and t = 0.

where

φ = 1 + eϑ1 + eϑ2 + a12e
ϑ1+ϑ2 ,

ϑi = aix+ biy + ciz − (a5i + bi + ci)t, i = 1, 2,

a12 =
a41 − 3a31a2 + 4a21a

2
2 − 3a1a

3
2 + a42

a41 + 3a31a2 + 4a21a
2
2 + 3a1a32 + a42

.

Figure 3 represents the physical mechanism of the above single and double solitons

for (a) a1 = −2, b1 = 1, c1 = −1, y = 1, and t = 0; (b) a1 = −1.75, b1 = 0.1,

c1 = 0.1, a2 = −1, b2 = 2, c2 = −1, y = 1, and t = 0. More precisely, Fig. 3(a) shows

a bright wave while Fig. 3(b) demonstrates the interaction of two bright waves.

3.4. Other solitons of the model

To derive other single solitons of the model, we first adopt two ansatzes as follows:

(i) u = A+B tanh2(ax+ by + cz − wt),

(ii) u = A+B sech2(ax+ by + cz − wt).

2250229-8
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By substitution of the first ansatz into Eq. (1), the following system is acquired:

360a5 + 270Ba3 + 45B2a = 0,

−240a5 − 180Aa3 − 300Ba3 − 90ABa− 90B2a = 0,

16a5 + 60Aa3 + 60Ba3 + 45A2a+ 90ABa+ 45B2a+ b+ c− w = 0,

with the following results:

Result 1:

B = −2a2, w = 76a5 − 120Aa3 + 45A2a+ b+ c.

So, the following single soliton to the model is achieved:

u1 = A− 2a2 tanh2(ax+ by + cz − (76a5 − 120Aa3 + 45A2a+ b+ c)t).

Result 2:

A =
8

3
a2, B = −4a2, w = 16a5 + b+ c.

Therefore, the following single soliton to the model is achieved:

u2 =
8

3
a2 − 4a2 tanh2(ax+ by + cz − (16a5 + b+ c)t).

In a similar way, by substitution of the second ansatz into Eq. (1), the following

system is derived:

360a5 − 270Ba3 + 45B2a = 0,

−240a5 − 180Aa3 + 120Ba3 + 90ABa = 0,

16a5 + 60Aa3 + 45A2a+ b+ c− w = 0,

whose solution leads to the following results:

Fig. 4. (Color online) The second soliton for a = 1, b = 1, c = 0.5, y = 1, and t = 0.
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Result 1:

B = 2a2, w = 16a5 + 60Aa3 + 45A2a+ b+ c.

Thus, the following single soliton to the model is gained:

u3 = A+ 2a2sech2(ax+ by + cz − (16a5 + 60Aa3 + 45A2a+ b+ c)t).

Result 2:

A = −4

3
a2, B = 4a2, w = 16a5 + b+ c.

Consequently, the following single soliton to the model is obtained:

u4 = −4

3
a2 + 4a2sech2(ax+ by + cz − (16a5 + b+ c)t).

The physical mechanism of the second soliton, revealing a bright wave, has been

shown in Fig. 4 for a = 1, b = 1, c = 0.5, y = 1, and t = 0.

4. Conclusion

The main goal of this paper was to study a new generalized KdV equation that

simulates the motions of long waves in shallow water under the gravity field. More

precisely, by applying the TPE, the Bäcklund transformation of the model was first

extracted. Such a logarithmic transformation, u = 2(ln(φ))xx, was then employed to

construct the bilinear form of the new generalized KdV equation. Furthermore, sev-

eral well-designed methods were formally adopted to acquire diverse wave structures

of the governing model that are categorized as lump-type, complexiton, and soliton

solutions. In the end, some graphical illustrations were considered to exhibit the

physical mechanism of the obtained solutions for particular choices of the involved

parameters. In future work, the authors will try to apply other methods38–52 for

constructing other diverse wave structures of the new generalized KdV equation.
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