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In the present paper, the authors are interested in studying a famous nonlinear PDE re-
ferred to as the (2 + 1)-dimensional chiral Schrödinger (2D-CS) equation with applications in
mathematical physics. In this respect, the real and imaginary portions of the 2D-CS equation
are firstly derived through a traveling wave transformation. Different wave structures of the
2D-CS equation, classified as bright and dark solitons, are then retrieved using the modified
Kudryashov (MK) method and the symbolic computation package. In the end, the dynamics of
soliton solutions is investigated formally by representing a series of 3D-plots.
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1. Introduction

The search for different wave structures of the (2 + 1)-dimensional chiral Schrödinger equa-
tion [1–7]

iut + c1
(
uxx + uyy

)
+ i

(
c2 (uu

∗
x − u∗ux) + c3

(
uu∗y − u∗uy

))
u = 0 (1.1)

has achieved much attention in recent years and has been the topic of many studies. The origin
of the 2D-CS equation goes back to its 1-dimensional version that was proposed by Nishino
et al. [8] as a reduction of a model describing the edge states of the fractional quantum Hall
effect [9]. Many scholars have spent their efforts to study the 2D-CS equation. Hosseini and
Mirzazadeh [5] applied the Jacobi method to derive solitons and other solutions of the 2D-CS
equation. Osman et al. [6] found a group of exact solutions of the 2D-CS equation using the Fan
sub-equation method. Rezazadeh et al. [7] employed the extended rational sine-cosine/sinh-cosh
methods to obtain traveling wave solutions of the 2D-CS equation. Very recently, Sulaiman
and his colleagues [10] considered the 2D-CS equation with variable coefficients and obtained
its complex wave solutions through a series of test functions. It is worth mentioning that ut is
the evolution term, c1 is the coefficient of dispersion terms, and c2 and c3 are the coefficients of
nonlinear terms. Additionally, Eq. (1.1) cannot possess the Painlevé test [1] and such a property
indicates the significance of investigating its exact solutions.

The present article investigates different wave structures of the 2D-CS equation using the
modified Kudryashov method [11–14]. This method utilizes a special finite series solution in the
form [15]

U(ε) = a0 +

N∑
i=1

(
K(ε)

1 +K2(ε)

)i−1(
ai

K(ε)

1 +K2(ε)
+ bi

1−K2(ε)

1 +K2(ε)

)
, aN or bN 	= 0,

which is different from that considered in its conventional version [16–19], namely,

U(ε) = a0 +

N∑
i=1

aiK
i(ε), aN 	= 0.

Such a selection provides other exact solutions of nonlinear PDEs which cannot be derived by
the Kudryashov method. To address recent applications of the modified Kudryashov method in
finding exact solutions of nonlinear PDEs, Hosseini et al. [11] adopted this method to look for
exact solutions of a nonlinear high-order Schrödinger equation. Hosseini et al. [12] also applied
this method to seek exact solutions of a 2D nonlinear Schrödinger system. More articles can be
found in [20–29].

This paper is organized as follows: Section 2 presents an outline of the modified Kudryashov
method along with several useful remarks. In Section 3, the real and imaginary portions of
the 2D-CS equation are derived and then different wave structures of the 2D-CS equation are
retrieved using the modified Kudryashov method. Besides, the dynamics of soliton solutions is
investigated by representing a series of 3D-plots. Finally, Section 4 gives a review of the results.

2. Modified Kudryashov method

This section aims to present an outline of the modified Kudryashov method to retrieve differ-
ent wave structures of nonlinear ODEs. To this end, the following nonlinear ODE is considered:

O(U, U ′, U ′′, . . .) = 0, U = U(ε), (2.1)

where ′ = d
dε .
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The KM method supposes that the solution of Eq. (2.1) can be represented as

U(ε) = a0 +
N∑
i=1

(
K(ε)

1 +K2(ε)

)i−1(
ai

K(ε)

1 +K2(ε)
+ bi

1−K2(ε)

1 +K2(ε)

)
, aN or bN 	= 0, (2.2)

where a0, ai, i = 1, 2, . . . , N , and bi, i = 1, 2, . . . , N are unknowns, N is established by the
balance approach, and K(ε) is a function of the form

K(ε) =
1

(A−B)sinh(ε) + (A+B)cosh(ε)
, (2.3)

which solves the following Jacobi equation:

(K ′(ε))2 = K2(ε)
(
1− 4ABK2(ε)

)
.

By plugging Eqs. (2.2) and (2.3) into Eq. (2.1) and reorganizing the terms, we will reach
a nonlinear algebraic set whose solution leads to different wave structures of Eq. (2.1).

Remark 1. When the balance number is N = 1 and b1 = a2, Eq. (2.2) can be written as

U(ε) = a0 + a1
K(ε)

1 +K2(ε)
+ a2

1−K2(ε)

1 +K2(ε)
, a1 or a2 	= 0,

and so

U(ε) =
(a0 − a2)K2(ε) + a1K(ε) + a0 + a2

K2(ε) + 1
, a1 or a2 	= 0. (2.4)

Remark 2. By considering Eq. (2.3), Eq. (2.4) can be written as

U(ε) =
((
2A2a0 + 2A2a2 − 2B2a0 − 2B2a2

)
sinh(ε) cosh(ε) + (Aa1 −Ba1) sinh(ε)+

+
(
2A2a0 + 2A2a2 + 2B2a0 + 2B2a2

)
(cosh(ε))2 + (Aa1 +Ba1) cosh(ε)−A2a0 −A2a2 +

+2ABa0 + 2ABa2 −B2a0 −B2a2 + a0 − a2
)
/
((
2A2 − 2B2

)
cosh(ε) sinh(ε)+

+
(
2A2 + 2B2

)
(cosh(ε))2 −A2 + 2AB −B2 + 1

)
, a1 or a2 	= 0. (2.5)

Remark 3. By considering

A = − 1

2B
, a0 = ∓b, a1 = 0, a2 = ±b,

from Eq. (2.5), one has

U1,2(ε) = ±
8bB2

(8B4 − 2) sinh(ε) cosh(ε) + (−8B4 − 2) (cosh(ε))2 + 4B4 + 1
.

Remark 4. By considering

B = 0, a0 = 0, a1 = ±b, a2 = 0,

from Eq. (2.5), one has

U3,4(ε) = ±
bA(sinh(ε) + cosh(ε))

2A2 sinh(ε) cosh(ε) + 2A2(cosh(ε))2 −A2 + 1
.
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Remark 5. By considering

B = 0, a0 = 0, a1 = 0, a2 = ±b,

from Eq. (2.5), one has

U5,6(ε) = ±
b
(
A4 + 4A2 sinh(ε) cosh(ε)− 1

)
A4 + 4A2(cosh(ε))2 − 2A2 + 1

.

Remark 6. By considering

B = 0, a0 = 0, a1 = ±b, a2 = c,

from Eq. (2.5), one has

U7,8(ε) =

(
A2c+ c

)
sinh(ε) + (A2c− c) cosh(ε)± bA

(A2 − 1) sinh(ε) + (A2 + 1) cosh(ε)
.

3. 2D-CS equation and its different wave structures

This section aims to derive different wave structures of the 2D-CS equation through the
modified Kudryashov method. For this purpose, the following traveling wave transformation is
used:

u(x, y, t) = U(ε)ei(κ2x+λ2y+μ2t), ε = κ1x+ λ1y − μ1t, (3.1)

where κ2 and λ2 are frequencies in the x- and y-directions, μ2 is the wave frequency, μ1 is the wave
velocity, and the other parameters are real constants. The traveling wave transformation (3.1)
reduces the 2D-CS equation to

c1
(
κ21 + λ21

) d2U(ε)

dε2
− (c1κ22 + c1λ

2
2 + μ2

)
U(ε) + 2 (c2κ2 + c3λ2)U

3(ε) = 0, (3.2)

where the wave velocity is μ1 = 2c1(κ1κ2 + λ1λ2).
Owing to the terms d2U(ε)

dε2 and U3(ε), we find the balance number as N = 1. Accordingly,
the nontrivial solution of Eq. (3.2) can be expressed as

U(ε) = a0 + a1
K(ε)

1 +K2(ε)
+ a2

1−K2(ε)

1 +K2(ε)
, a1 or a2 	= 0, (3.3)

where a0, a1, and a2 are unknowns. By plugging Eq. (3.3) into Eq. (3.2) and reorganizing the
terms, we will reach a nonlinear algebraic set in the form

−2a30c2κ2 − 2a30c3λ2 − 6a20a2c2κ2 − 6a20a2c3λ2 − 6a0a
2
2c2κ2 − 6a0a

2
2c3λ2 − 2a32c2κ2−

−2a32c3λ2 + a0c1κ
2
2 + a0c1λ

2
2 + a2c1κ

2
2 + a2c1λ

2
2 + a0μ2 + a2μ2 = 0,

−6a20a1c2κ2 − 6a20a1c3λ2 − 12a0a1a2c2κ2 − 12a0a1a2c3λ2 − 6a1a
2
2c2κ2−

−6a1a22c3λ2 − a1c1κ21 + a1c1κ
2
2 − a1c1λ21 + a1c1λ

2
2 + a1μ2 = 0,

−6a30c2κ2 − 6a30c3λ2 − 6a20a2c2κ2 − 6a20a2c3λ2 − 6a0a
2
1c2κ2 − 6a0a

2
1c3λ2 + 6a0a

2
2c2κ2+

+6a0a
2
2c3λ2 − 6a21a2c2κ2 − 6a21a2c3λ2 + 6a32c2κ2 + 6a32c3λ2 + 3a0c1κ

2
2 + 3a0c1λ

2
2+

+8a2c1κ
2
1 + a2c1κ

2
2 + 8a2c1λ

2
1 + a2c1λ

2
2 + 3a0μ2 + a2μ2 = 0,
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8ABa1c1κ
2
1 + 8ABa1c1λ

2
1 − 12a20a1c2κ2 − 12a20a1c3λ2 − 2a31c2κ2 − 2a31c3λ2 + 12a1a

2
2c2κ2+

+12a1a
2
2c3λ2 + 6a1c1κ

2
1 + 2a1c1κ

2
2 + 6a1c1λ

2
1 + 2a1c1λ

2
2 + 2a1μ2 = 0,

−48ABa2c1κ21 − 48ABa2c1λ
2
1 − 6a30c2κ2 − 6a30c3λ2 + 6a20a2c2κ2 + 6a20a2c3λ2 − 6a0a

2
1c2κ2−

−6a0a21c3λ2 + 6a0a
2
2c2κ2 + 6a0a

2
2c3λ2 + 6a21a2c2κ2 + 6a21a2c3λ2 − 6a32c2κ2 − 6a32c3λ2+

+3a0c1κ
2
2 + 3a0c1λ

2
2 − 8a2c1κ

2
1 − a2c1κ22 − 8a2c1λ

2
1 − a2c1λ22 + 3a0μ2 − a2μ2 = 0,

−24ABa1c1κ21 − 24ABa1c1λ
2
1 − 6a20a1c2κ2 − 6a20a1c3λ2 + 12a0a1a2c2κ2 + 12a0a1a2c3λ2−

−6a1a22c2κ2 − 6a1a
2
2c3λ2 − a1c1κ21 + a1c1κ

2
2 − a1c1λ21 + a1c1λ

2
2 + a1μ2 = 0,

16ABa2c1κ
2
1 + 16ABa2c1λ

2
1 − 2a30c2κ2 − 2a30c3λ2 + 6a20a2c2κ2 + 6a20a2c3λ2 − 6a0a

2
2c2κ2−

−6a0a22c3λ2 + 2a32c2κ2 + 2a32c3λ2 + a0c1κ
2
2 + a0c1λ

2
2 − a2c1κ22 − a2c1λ22 + a0μ2 − a2μ2 = 0.

Through employing the Maple software, from the above system, the following cases are
generated:

Case 1.

A = − 1

2B
, a0 = ∓

√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2︸ ︷︷ ︸
b

, a1 = 0, a2 = ±
√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2︸ ︷︷ ︸
b

,

μ2 = 4c1κ
2
1 − c1κ22 + 4c1λ

2
1 − c1λ22.

Thus, the following soliton solutions to the 2D-CS equation are derived:

u1,2(x, y, t) =

= ±8
√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2
B2

/((
8B4 − 2

)
sinh(κ1x+ λ1y − μ1t) cosh(κ1x+ λ1y − μ1t)+

+
(−8B4 − 2

)
(cosh(κ1x+ λ1y − μ1t))2 + 4B4 + 1

)
ei(κ2x+λ2y+μ2t),

where

μ1 = 2c1(κ1κ2 + λ1λ2), μ2 = 4c1κ
2
1 − c1κ22 + 4c1λ

2
1 − c1λ22,

−c1κ21 − c1λ21
c2κ2 + c3λ2

< 0.

Case 2.

B = 0, a0 = 0, a1 = ± 2

√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2︸ ︷︷ ︸
b

, a2 = 0, μ2 = c1κ
2
1 − c1κ22 + c1λ

2
1 − c1λ22.

Therefore, the following soliton solutions to the 2D-CS equation are obtained:

u3,4(x, y, t) = ±2
√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2
A(sinh(κ1x+ λ1y − μ1t)+

+ cosh(κ1x+ λ1y − μ1t))
/(

2A2 sinh(κ1x+ λ1y − μ1t) cosh(κ1x+ λ1y − μ1t)+

+2A2(cosh(κ1x+ λ1y − μ1t))2 −A2 + 1
)
ei(κ2x+λ2y+μ2t),
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where

μ1 = 2c1(κ1κ2 + λ1λ2), μ2 = c1κ
2
1 − c1κ22 + c1λ

2
1 − c1λ22,

−c1κ21 − c1λ21
c2κ2 + c3λ2

< 0.

Case 3.

B = 0, a0 = 0, a1 = 0, a2 = ±
√
−c1κ

2
1 + c1λ

2
1

c2κ2 + c3λ2︸ ︷︷ ︸
b

, μ2 = −c1
(
2κ21 + κ22 + 2λ21 + λ22

)
.

Consequently, the following soliton solutions to the 2D-CS equation are obtained:

u5,6(x, y, t) = ±

√
− c1κ

2
1+c1λ

2
1

c2κ2+c3λ2

(
A4 + 4A2 sinh(κ1x+ λ1y − μ1t) cosh(κ1x+ λ1y − μ1t)− 1

)
A4 + 4A2(cosh(κ1x+ λ1y − μ1t))2 − 2A2 + 1

×

× ei(κ2x+λ2y+μ2t),

where

μ1 = 2c1(κ1κ2 + λ1λ2), μ2 = −c1
(
2κ21 + κ22 + 2λ21 + λ22

)
,

c1κ
2
1 + c1λ

2
1

c2κ2 + c3λ2
< 0.

Case 4.

B = 0, a0 = 0, a1 = ±
√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2︸ ︷︷ ︸
b

, a2 =

√
− c1κ

2
1 + c1λ

2
1

4c2κ2 + 4c3λ2︸ ︷︷ ︸
c

,

μ2 = −
1

2

(
κ21 + 2κ22 + λ21 + 2λ22

)
c1.

Accordingly, the following exact solutions to the 2D-CS equation are achieved:

u7,8(x, y, t) =

(
A2c+ c

)
sinh(κ1x+ λ1y − μ1t) +

(
A2c− c) cosh(κ1x+ λ1y − μ1t)± bA

(A2 − 1) sinh(κ1x+ λ1y − μ1t) + (A2 + 1) cosh(κ1x+ λ1y − μ1t)
×

× ei(κ2x+λ2y+μ2t),

where

b =

√
−−c1κ

2
1 − c1λ21

c2κ2 + c3λ2
,

c =

√
− c1κ

2
1 + c1λ

2
1

4c2κ2 + 4c3λ2
,

μ1 = 2c1(κ1κ2 + λ1λ2),

μ2 = −
1

2

(
κ21 + 2κ22 + λ21 + 2λ22

)
c1.
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Remark. It should be noted that, by applying the Kudryashov method, one arrives at a nonlinear
algebraic set in the form

2a30c2κ2 + 2a30c3λ2 − a0c1κ22 − a0c1λ22 − a0μ2 = 0,

6a20a1c2κ2 + 6a20a1c3λ2 + a1c1κ
2
1 − a1c1κ22 + a1c1λ

2
1 − a1c1λ22 − a1μ2 = 0,

6a0a
2
1c2κ2 + 6a0a

2
1c3λ2 = 0,

−8ABa1c1κ21 − 8ABa1c1λ
2
1 + 2a31c2κ2 + 2a31c3λ2 = 0,

where its solution gives

a0 = 0, a1 = ±
√
−−4ABc1κ

2
1 − 4ABc1λ

2
1

c2κ2 + c3λ2
, μ2 = c1κ

2
1 − c1κ22 + c1λ

2
1 − c1λ22.

Subsequently, the following soliton solutions to the 2D-CS equation are obtained:

u1,2(x, y, t) = ±
√
−−4ABc1κ

2
1−4ABc1λ

2
1

c2κ2+c3λ2

(A−B) sinh(κ1x+ λ1y − μ1t) + (A+B) cosh(κ1x+ λ1y − μ1t)
ei(κ2x+λ2y+μ2t),

where

μ1 = 2c1(κ1κ2 + λ1λ2),

μ2 = c1κ
2
1 − c1κ22 + c1λ

2
1 − c1λ22,

−4ABc1κ21 − 4ABc1λ
2
1

c2κ2 + c3λ2
< 0.

Now, the authors are interested in analyzing the dynamics of soliton solutions derived above
by representing a series of 3D-plots. To this end, the first soliton derived using the MK method
has been plotted in Figure 1 for B = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = 0.5, κ2 = −0.5, λ1 = 1,
λ2 = 1, (a) t = 0 and (b) t = 1. Figure 2 represents the fifth soliton obtained through the MK
method for A = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = −0.25, κ2 = −0.25, λ1 = 1, λ2 = 1, (a) t = 0
and (b) t = 1. The first soliton derived using the Kudryashov method has been portrayed in
Figure 3 for A = 2, B = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = 0.5, κ2 = −0.5, λ1 = 1, λ2 = 1, (a) t = 0
and (b) t = 1. It should be stated that the first, second, and third figures signify the bright,
dark, and bright solitons, respectively. Furthermore, the MK method is capable of retrieving
both bright and dark solitons.

As a specific feature, the bright and dark solitons derived using the MK method move in
opposite directions. To show such a feature, the following figures are considered.

4. Conclusion

In the present paper, the (2 + 1)-dimensional chiral Schrödinger equation with applications
in mathematical physics was considered and explored successfully. First, a traveling wave trans-
formation was adopted to derive the real and imaginary portions of the 2D-CS equation, then the
second-order nonlinear ODE in the real domain was solved through the modified Kudryashov
method and the symbolic computation package. As an achievement, several bright and dark
solitons to the 2D-CS equation were formally extracted. In the end, the dynamics of soliton
solutions was examined by establishing a series of 3D-plots.
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Fig. 1. The first soliton derived using the MK method for B = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = 0.5,
κ2 = −0.5, λ1 = 1, λ2 = 1, (a) t = 0 and (b) t = 1

Fig. 2. The fifth soliton obtained through the MK method for A = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = −0.25,
κ2 = −0.25, λ1 = 1, λ2 = 1, (a) t = 0 and (b) t = 1

Fig. 3. The first soliton derived using the Kudryashov method for A = 2, B = 1, c1 = 1, c2 = 1, c3 = 1,
κ1 = 0.5, κ2 = −0.5, λ1 = 1, λ2 = 1, (a) t = 0 and (b) t = 1
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Fig. 4. (a) The first soliton derived using the MK method for B = 1, c1 = 1, c2 = 1, c3 = 1, κ1 = 0.5,
κ2 = −0.5, λ1 = 1, λ2 = 1, and y = 0; (b) The fifth soliton obtained through the MK method for A = 1,
c1 = 1, c2 = 1, c3 = 1, κ1 = −0.25, κ2 = −0.25, λ1 = 1, λ2 = 1, and y = 0
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