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Abstract This paper addresses a gene therapy model under different cancer treatment com-
binations, considering effector cell and cancer cell populations. A gene therapy model has been
modified by introducing radiotherapy and mAb drug treatment, respectively. The qualitative
behaviour of the model under gene therapy, radio-genic therapy, and mAb-gene therapy is ex-
amined at each of the equilibrium points of the model. Analytical findings have been verified
numerically. In addition, the system’s dynamics have been investigated for different values of
the treatment parameters. Our results reveal that the optimum level of immunotherapy can
eradicate cancer cells from the body for the gene therapy model. Besides these findings, we
have also found that combining radiotherapy, immunotherapy, and gene therapy could be a
better cancer treatment strategy. For mAb-gene therapy, two scenarios have been presented
in which the applied treatment can suppress cancer growth to zero.
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1 Introduction

Cancer is caused by malignant tumours, which are uncontrollable growths of abnor-
mal cells. In the initial stage, a tumour is not so dangerous; it becomes so when it
invades other tissues and gains the ability to spread rapidly within the body. In the
early 1990s, researchers developed mathematical models to explore the complex phe-
nomenon of tumour-immune dynamics [1, 2, 4, 3]. Also, a few works [5, 6, 7, 8, 9] were
carried out to observe the effect of different treatment procedures on tumour-immune
dynamics. During this time, surgery, radiotherapy, chemotherapy, and immunotherapy
were the primary treatment methods for cancer management. However, effective treat-
ment depends on many factors, such as the tumour’s response to the treatment, the
stage and location of the tumour, the patient’s immune response to the applied treat-
ment, etc. So, combining two or more treatments has gained more interest in searching
for effective cancer treatment. The current study separately represents a gene therapy
model under radiotherapy and mAb therapy.

The prime aspect of surgery for cancer treatment is to remove the tumour physi-
cally through an operating procedure. In radiation treatment, an ionizing agent kills



16 Dehingia K., Sarmah H. K., Das A., Park C., Hosseini K.

cancer cells by depositing energy in the tissue sites [10, 11]. Chemotherapy is a cycle-
based treatment protocol where chemical drugs are used to eradicate cancer; it also
harms other healthy tissues of the body. The main target of immunotherapy in cancer
treatment is to enhance or boost the patients’ immune systems using external input to
fight against cancer. At the present time, clinical oncologists are using gene therapy
[11, 12, 13], and monoclonal antibody therapy (mAb) [15, 16, 14] for cancer treatment.
Gene therapy is an effective cancer treatment that induces a well-engineered gene into
the body’s abnormal cells. In mAb therapy, external input is injected to activate the
body’s antibodies to attack the tumour directly.

Recently, a few reports have been published investigating the effects of various
treatment strategies for cancer management. Belostotski and Freedman have mod-
elled the radiotherapy treatment for cancer eradication with different control policies
[17]. In [18], the authors have highlighted the importance of mathematical modelling
in therapeutic success and developing efficient therapies for cancer treatment. de Pil-
lis et al.[29] developed a mathematical model to investigate the effectiveness of mAb
treatment on colorectal cancer growth. The authors of [19] proposed three models to
understand the impact of radiation when the cancerous cells, the healthy cells, and
the cells triggered by the immune cells interact. Considering targeted chemotherapy
as a treatment for cancer, Liu and Liu constructed a model and found that targeted
chemotherapy is a more effective treatment than regular chemotherapy to kill tumour
cells [20]. Talkington et al. [21] explored the effect of adoptive immunotherapy for
cancer treatment on four earlier mathematical models: Kuznetsov et al.[1], Kirschner
and Panetta [6], Dong et al. [22], and Moore and Li [23]. Their results revealed that
adoptive immunotherapy can successfully drive a patient from the large tumour fixed
point to equilibrium with little or no tumour. A mathematical study by Ghosh and
Banerjee [24] reported that antibodies also play a vital role in the cancer-immune sys-
tem. A Caputo-type fractional-order mathematical model was proposed by Farayola
et al. for cancer treatment via radiotherapy [25]. A practical scenario of a tumour
clearance problem was described in [26] by considering a six-dimensional mathematical
model under chemo-immunotherapy treatments.

In 2013, Tsygvintsev et al. [28] proposed a gene therapy model considering effector
cells and cancerous cells. Tsygvintsev et al. [28] proposed their model using two non-
linear differential equations:

dI

dt
= q(t)M +

pI

I + f
− dI + u(t),

dM

dt
= r(t)M(1− bM)− a(t)

IM

g +M
,

where I(t) denotes the effector cell population and M(t) denotes the cancerous cell
population at time t > 0. They considered the parameters q(t) for cancer antigenicity,
u(t) for immunotherapy, r(t) for logistic cancer growth, and a(t) for rate of cancer
clearance by gene therapy to be varied with time. However, in our study, we keep q(t)
and r(t) as constants, whereas u(t) and a(t) vary with time. Tsygvintsev et al. [28]
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found that combining a high amount of immunotherapy and gene therapy could have
a better result in clearing cancer from the body. Since a high dose of immunotherapy
causes many side effects like nausea, fever, etc. Keeping these side effects in mind, we
modified the Tsygvintsev et al. [28] model by introducing a new treatment parameter,
γ, for radiotherapy following Isea and Lonngren [19]. We have also assumed that
radiation energy is deposited directly into the cancer site to kill cancerous cells only.
Therefore, the model under radiotherapy becomes

dI

dt
= qM +

pI

I + f
− dI + u,

dM

dt
= rM(1− bM)− aIM

g +M
− γM.

Furthermore, another modification of the Tsygvintsev et al. [28] model is carried
out with the inclusion of monoclonal antibody (mAb) therapy [29] for killing cancer
cells directly. For this, we induce a new equation into the model [28] to describe mAb
drug administration C(t) at time t. The modified model takes the form

dI

dt
= qM +

pI

I + f
− dI + u,

dM

dt
= rM(1− bM)− aIM

g +M
− kMC,

dC

dt
= −ηC − ρM C

h+ C
+ v,

where the term −kMC in the second equation represents the death of cancer cells
due to interaction with mAb. In the third equation, v denotes the initial amount of
mAb drugs. The mAb protein in the body can be degraded via a natural process de-
noted by −ηC. The term −ρM C

h+C
represents the loss of available mAbs as they bind

to cancer cells.

The rest of the paper is organized as follows: Section 2 discusses the qualitative
analysis of the proposed model under the considered treatments. Then, the numerical
simulations of our qualitative results are presented in section 3. Finally, section 4
summarises the present study.

2 Qualitative analysis

In this section, we will discuss the qualitative behaviour of our proposed model under
different treatment combinations at the equilibrium points to understand the dynamical
properties of the model. For this, we assume that all three equations of the system
ensure positive and bounded solutions.
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2.1 The model under gene therapy

The gene therapy model takes the form

dI

dt
= qM +

pI

I + f
− dI + u,

dM

dt
= rM(1− bM)− aIM

g +M
.

(1)

We first search the equilibrium points of the model (1) by setting dI
dt

= 0 and dM
dt

= 0.
The equilibrium points of the system (1) are

1. Cancer free equilibria: P1(I1, 0) and P2(I2, 0), where I1 and I2 are calculated from
the following equation

dI2 − (p+ u− df)I − uf = 0.

Solving above equation we get I1 and I2 as

I1 =
χ1 +

√
χ2

2d
, I2 =

χ1 −
√
χ2

2d
,

where
χ1 = p+ u− df, χ2 = (p+ u− df)2 + 4duf.

The equilibria P1 and P2 will exist only when I1 > 0 and I2 > 0 respectively.

2. Cancer infected equilibrium: P ∗(I∗,M∗), where

I∗ =
r(1− bM∗)(g +M∗)

a
, M∗ =

dI∗ − u− pI∗

I∗+f

q
.

The equilibrium P ∗ will exist if dI∗ > u+ pI∗

I∗+f
and M∗ < 1

b
.

Now, we will check the dynamics of the system (1) at the equilibria P1, P2 and P ∗.
For this, we obtain the Jacobian matrix by linearizing the system (1). The Jacobian
matrix of the system (1) is

J =

(
−d+ pf

(I+f)2
q

−aM
g+M

r(1− 2bM)− agI
(g+M)2

)
.

Corresponding to the cancer free equilibrium point P1(I1, 0) the Jacobian matrix is

J(P1) =

(
−d+ pf

(I1+f)2
q

0 r − aI1
g

)
.

The eigenvalues of J(P1) are: −d + pf
(I1+f)2

and r − aI1
g
. Hence, P1 is stable if

pf
(I1+f)2

< d and r < aI1
g
; otherwise unstable.
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Similarly, corresponding to the cancer free equilibrium point P1(I1, 0) the Jacobian
matrix is

J(P2) =

(
−d+ pf

(I2+f)2
q

0 r − aI2
g

)
.

The eigenvalues of J(P2) are: −d + pf
(I2+f)2

and r − aI2
g
. Hence, P2 is stable if

pf
(I2+f)2

< d and r < aI2
g
; otherwise unstable.

The Jacobian matrix at the cancer infected equilibrium P ∗(I∗,M∗) is

J(P ∗) =

(
−d+ pf

(I∗+f)2
q

−aM∗
g+M∗

r(1− 2bM∗)− agI∗

(g+M∗)2

)
.

The eigenvalues λ∗1 and λ∗2 of J(P ∗) are calculated from the characteristic equation

λ2 + Π1λ+ Π2 = 0,

where 
Π1 = d+

agI∗

(g +M∗)2
− pf

(I∗ + f)2
− r(1− 2bM∗),

Π2 =

{
r(1− 2bM∗)− agI∗

(g +M∗)2

}{
− d+

pf

(I∗ + f)2

}
+

aqM∗

g +M∗ .

Therefore, the equilibrium P ∗ will be asymptotically stable if Π1 > 0 and Π2 > 0.

2.2 The model under radio-genic therapy

The radio-genic therapy model is

dI

dt
= qM +

pI

I + f
− dI + u,

dM

dt
= rM(1− bM)− aIM

g +M
− γM.

(2)

By setting dI
dt

= 0 and dM
dt

= 0, we get the eqilibrium points of the system (2) as

1. Cancer free equilibria: Q1(I
′
1,M

′
1 = 0) and Q2(I

′
2,M

′
2 = 0), where I ′1 and I ′2 are

calculated from the following equation

dI2 − (p+ u− df)I − uf = 0.

Solving above equation we get I ′1 and I ′2 as

I ′1 =
χ′1 +

√
χ′2

2d
, I ′2 =

χ′1 −
√
χ′2

2d
,

where
χ′1 = p+ u− df, χ′2 = (p+ u− df)2 + 4duf.

The equilibria Q1 and Q2 will exist only when I ′1 > 0 and I ′2 > 0 respectively.



20 Dehingia K., Sarmah H. K., Das A., Park C., Hosseini K.

2. Cancer infected equilibrium: Q′(I ′,M ′), where

I ′ =
{r(1− bM ′)− γ}(g +M ′)

a
, M ′ =

dI ′ − u− pI′

I′+f

q
.

The equilibrium Q′ will exist if dI ′ > u+ pI′

I′+f
and rbM ′ + γ < r.

To check the stability behaviour of the system (2), we calculated the Jacobian matrix
of the system (2). The Jacobian matrix is

J ′ =

(
−d+ pf

(I+f)2
q

−aM
g+M

r(1− 2bM)− agI
(g+M)2

− γ

)
.

• The eigenvalues of the Jacobian matrix at equilibrium Q1 are −d + pf
(I′1+f)

2 and

r − aI′1
g
− γ. Hence, Q1 is stable only when pf

(I′1+f)
2 < d and r < aI′1

g
+ γ.

• Corresponding to the equilibrium Q2, the eigenvalues are −d + pf
(I′2+f)

2 and r −
aI′2
g
− γ. Therefore, Q2 is stable if pf

(I′2+f)
2 < d and r < aI′2

g
+ γ.

• Corresponding to the equilibrium Q′, the eigenvalues of the Jacobian matrix are
calculated from the equation

λ2 + A1λ+ A2 = 0,

where
A1 = d+

agI ′

(g +M ′)2
+ γ − pf

(I ′ + f)2
− r(1− 2bM ′),

A2 =

{
r(1− 2bM ′)− agI ′

(g +M ′)2
− γ
}{
− d+

pf

(I ′ + f)2

}
+

aqM ′

g +M ′ .

Therefore, the equilibrium Q′ will be asymptotically stable if A1 > 0 and A2 > 0.

Now, we will derive the conditions for which the system (2) is globally asymptotically
stable at cancer free equilibria Q1 and Q2.

Consider a Lyapunov function of the form

V (I,M) = (I − I ′1 − I ′1ln
I

I ′1
) + (M −M ′

1).
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Differentiating above equation with respect to t, we get

dV

dt
=

(
1− I ′1

I

)
dI

dt
+
dM

dt

=

(
1− I ′1

I

)(
qM +

pI

I + f
− dI + u

)
+

(
rM(1− bM)− aIM

g +M
− γM

)
=

(
1− I ′1

I

)(
qM +

pI

I + f
− pI ′1
I ′1 + f

− d(I − I ′1)
)

+

+

(
rM(1− bM)− aIM

g +M
− γM

)
= (I − I ′1)

(
qM

I
+
( pI

I + f
− pI ′1
I ′1 + f

)1

I
− d

I
(I − I ′1)

)
+

+

(
rM(1− bM)− aM

g +M
(I − I ′1)−

aM

g +M
I ′1 − γM

)
≤
(
qM

I
(I − I ′1)−

d

I
(I − I ′1)2

)
+

(
− rbM2 − aM

g +M
(I − I ′1)

)
+

[since, I < I + f and I ′1 < I ′1 + f ]

+ rM − aM

g +M
I ′1 − γM

≤
(
qM

I
(I − I ′1)−

d

I
(I − I ′1)2

)
+

(
− rbM2 − aM

g +M
(I − I ′1)

)
+

+
(
r − a

g +M
I ′1 − γ

)
M

= −XTAX −BTX

where
XT = [I − I ′1,M ], BT =

[
0,−r +

aI ′1
g +M

+ γ
]
,

and

A =

( d
I

1
2

(
− q

I
+ a

g+M

)
1
2

(
− q

I
+ a

g+M

)
rb

)
.

By noting the second component of the vector B, we must have

aI ′1
g +M

+ γ > r,

for which BTX > 0.

Now, when t→∞ then from the system (2) we get

dI

dt
≤ u− dI =⇒ I(t) ≤ u

d
+ e−dtI(0) =⇒ lim

t→∞
sup[I(t)] ≤ u

d
,

and
dM

dt
≤ rM(1− bM) =⇒ M(t) ≤ 1

b+M(0)e−rt
=⇒ lim

t→∞
sup[M(t)] ≤ 1

b
.
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Thus, if I ≤ u
d
, M ≤ 1

b
, then XTAX > 0 which shows that dV

dt
< 0.

We calculated dV (I,M)
dt

to verify our above results numerically [considering various
initial values, all parameters given in Table 1 and γ = 0.1]. Hence, by Lyapunov
stability theorem, Q1 is found to be globally asymptotically stable. Therefore, the
cancer free equilibrium Q1 is globally asymptotically stable if following conditions hold

aI ′1
g +M

+ γ > r, I ≤ u

d
, and M ≤ 1

b
,

provided the equilibrium point Q1 satisfy local stability conditions mentioned in the
beginning of this section.

In the same way, we can derive the conditions for which the system (2) is globally
asymptotically stable at the equilibrium Q2.

2.3 The model under mAb-gene therapy

After the successful analysis of gene and redio-genic therapy model, now we are going
to analyse the mAb-gene therapy model. The model takes the form

dI

dt
= qM +

pI

I + f
− dI + u,

dM

dt
= rM(1− bM)− aIM

g +M
− kMC,

dC

dt
= −ηC − ρM C

h+ C
+ v.

(3)

The equilibrium points of the system (3) are

1. Cancer free equilibria: R1(Î1, M̂1 = 0, Ĉ1 = v
η
) and R2(Î2, M̂2 = 0, Ĉ2 = v

η
) where

Î1 and Î2 are calculated from the following equation:

dI2 − (p+ u− df)I − uf = 0.

Solving above equation we get Î1 and Î2 as

Î1 =
χ̂1 +

√
χ̂2

2d
, Î2 =

χ̂1 −
√
χ̂2

2d
,

where
χ̂1 = p+ u− df, χ̂2 = (p+ u− df)2 + 4duf.

The equilibria R1 and R2 will exist only when Î1 > 0 and Î2 > 0 respectively.

2. Cancer infected equilibrium: R̂(Î , M̂ , Ĉ) where

Î =
{r(1− bM̂)− kĈ}(g + M̂)

a
, M̂ =

dÎ − pÎ

Î+f
− u

q
,
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and Ĉ will be calculated from the following equation

ηC2 − (v − ρM̂ − ηh)C − vh = 0.

The equilibrium R̂ will exist if dÎ > pÎ

Î+f
+ u and rbM̂ + kĈ < r.

The Jacobian matrix of the system (3) is given below

Ĵ =


pf

(I+f)2
− d q 0

− aM
g+M

r − 2rbM − agI
(g+M)2

− kC −kM
0 − ρC

h+C
−η − ρhM

(h+C)2

 .

• The eigenvalues of the Jacobian matrix at the cancer free equilibrium R1 are −η,
r− aÎ1

g
− kĈ1, and pf

(Î1+f)2
− d. As −η < 0, hence this equilibrium becomes stable

if r < aÎ1
g

+ kĈ1, and pf

(Î1+f)2
< d; otherwise unstable.

• Corresponding to the another cancer free equilibrium R2, the eigenvalues of the
Jacobian matrix are −η, r − aÎ2

g
− kĈ2, and pf

(Î2+f)2
− d. As −η < 0, hence R2

becomes stable only when r < aÎ2
g

+ kĈ2, and pf

(Î2+f)2
< d; otherwise unstable.

• The eigenvalues of the Jacobian matrix at cancer infected equilibrium R̂ are the
roots of following equation

λ3 +B1λ
2 +B2λ+B3 = 0, (4)

where 
B1 = −b11 − b22 − b33,
B2 = b22b33 + b11b33 + b11b22 − b32b23 − b21b12,
B3 = b11b32b23 + b12b21b33 − b11b22b33,

with

b11 =
pf

(Î + f)2
− d, b12 = q, b21 = − aM̂

g + M̂
,

b22 = r − 2rbM̂ − agÎ

(g + M̂)2
− kĈ, b23 = −kM̂,

b32 = − ρĈ

h+ Ĉ
, b33 = −η − ρhM̂

(h+ Ĉ)2
.


According to Routh-Hurwitz rule, the roots of the equation (4) have negative real
part if and only if

B1 > 0, B2 > 0, B1B2 −B3 > 0. (5)

Hence, for locally asymptotically stable at R̂, (5) must hold otherwise it will be
unstable.
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Next, we establish the conditions for which the system (3) is globally stable at
cancer-free equilibria R1 and R2. For this we construct a Lyapunov function as:

W (I,M,C) = (I − Î1 − Î1ln
I

Î1
) + (M − M̂1) + (C − Ĉ1 − Ĉ1ln

C

Ĉ1

).

Now, differentiating above equation with respect to t and get

dW

dt
=

(
1− Î1

I

)
dI

dt
+
dM

dt
+

(
1− Ĉ1

C

)
dC

dt
,

=

(
1− Î1

I

)(
qM +

pI

I + f
− dI + u

)
+

(
rM(1− bM)− aIM

g +M
− kMC

)
+(

1− Ĉ1

C

)(
− ηC − ρM C

h+ C
+ v

)
,

=

(
1− Î1

I

)(
qM +

pI

I + f
− pÎ1

Î1 + f
− d(I − Î1)

)
+

(
rM(1− bM)− aIM

g +M

− kMC

)
+

(
1− Ĉ1

C

)(
− η(C − Ĉ1)− ρM

C

h+ C

)
,

= (I − Î1)
(
qM

I
+
( pI

I + f
− pÎ1

Î1 + f

)1

I
−

d

I
(I − Î1)

)
+

(
rM(1− bM)− aM

g +M
(I − Î1)

− aM

g +M
Î1 − kM(C − Ĉ1)− kMĈ1

)
+ (C − Ĉ1)

(
−η
C

(C − Ĉ1)− ρM
1

h+ C

)
,

≤
(
qM

I
(I − Î1)−

d

I
(I − Î1)2

)
+

(
− rbM2 − aM

g +M
(I − Î1)− kM(C − Ĉ1)

)
+(

−η
C

(C − Ĉ1)
2 − ρM 1

h+ C
(C − Ĉ1)

)
+ rM − aM

g +M
Î1 − kMĈ1,

[since, I < I + f and Î1 < Î1 + f ]

≤
(
qM

I
(I − Î1)−

d

I
(I − Î1)2

)
+

(
− rbM2 − aM

g +M
(I − Î1)− kM(C − Ĉ1)

)
+(

−η
C

(C − Ĉ1)
2 − ρM 1

h+ C
(C − Ĉ1)

)
+
(
r − a

g +M
Î1 − kĈ1

)
M,

= −Y TDY −NTY,

where

Y T = [I − Î1,M,C − Ĉ1], NT =
[
0,−r +

aÎ1
g +M

+ kĈ1, 0
]
,

and

D =

 d
I

1
2

(
− q

I
+ a

g+M

)
0

1
2

(
− q

I
+ a

g+M

)
rb 1

2

(
k + ρ

h+C

)
0 1

2

(
k + ρ

h+C

)
η
C

 .
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By noting the second component of the vector N , we must have

aÎ1
g +M

+ kĈ1 > r,

for which NTY > 0.

Now when t→∞ then from system (3) we get

dI

dt
≤ u− dI =⇒ I(t) ≤ u

d
+ e−dtI(0) =⇒ lim

t→∞
sup[I(t)] ≤ u

d
,

dM

dt
≤ rM(1− bM) =⇒ M(t) ≤ 1

b+M(0)e−rt
=⇒ lim

t→∞
sup[M(t)] ≤ 1

b
,

and
dC

dt
≤ v − ηC =⇒ C(t) ≤ v

η
+ e−ηtC(0) =⇒ lim

t→∞
sup[C(t)] ≤ v

η
.

Thus, if I ≤ u
d
, M ≤ 1

b
and C ≤ v

η
, then Y TDY > 0 which shows that dW

dt
< 0.

We calculated dW (I,M,C)
dt

to verify our above results numerically [considering vari-
ous initial values, all parameters given in Table 1 and Table 2]. Hence, by Lyapunov
stability theorem, R1 is globally asymptotically stable. Therefore, the cancer-free equi-
librium point R1 is globally asymptotically stable if following conditions hold

aÎ1
g +M

+ kĈ1 > r, I ≤ u

d
, M ≤ 1

b
, and C ≤ v

η
,

provided that the equilibrium R1 satisfies local stability conditions which were dis-
cussed in the beginning of this section.

In the same way, we can derive the conditions for which the system (3) is globally
asymptotically stable at the equilibrium R2.

3 Numerical simulation

In this section, we perform some numerical simulation of the proposed models under
different treatment combinations using MATLAB [with the parameter values given in
Table (1) and Table (2)]. The primary purpose of the numerical simulation is to vi-
sualize the change in the cell population’s state with time and outline the impact of
the variation of treatment efficacy on the growth of cancer cells. This is achieved by
varying the values of the treatment parameters.

The set of parameters used to observe the dynamics of effector cells and cancerous
cells for the gene therapy model (1) are: q = 0.05, p = 0.1245, f = 10−3, d = 0.03,
r = 0.18, b = 10−9, and g = 105. The initial values used in these simulations are
I(0) = M(0) = 1000.
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Table 1: Parameter values for the simulation.

Parameter Definition Value Range Source
q Cancer antigenicity 0.05 (1/time) [10−3, 0.5] [28]
u Immunotherapy term 1 (cell/time) [10−2, 102] [28]
p Proliferation rate of I 0.1245 (1/time) 0.1245 [28]
f Half saturation for I

proliferation term
10−3 (cells) [10−5, 1] [28]

d Half life of effector cells I 0.03 (1/time) 0.03 [28]
r Cancer growth rate 0.18 (1/time) [10−1, 2] [28]
b Cancer cell capacity 10−9 (1/cells) 10−9 [28]
a Cancer clearance term 1 (1/cells) [10−2, 102] [28]
g Half-saturation for

cancer clearance
105 (cells) 105 [28]

Table 2: Parameter values for the simulation.

Parameters Meaning Values Source
k Rate of mAb-

induced can-
cer death

5.5 × 10−1 L
mg−1Day−1

[29]

η Rate of mAb
turnover and
excretion

1.386 × 10−1

Day−1
[29]

ρ Rate of mAb-cancer cell
complex formation

8.9×10−14 mg
Cells−1L−1Day−1

[29]

h Concentration of mAbs for
Half-maximal EGFR binding

4.45 × 10−5

mg L−1
[29]

For the treatment parameters u = 1, and a = 1, the system (1) has two biologically
feasible equilibria: P1(37.48, 0) which is cancer-free and P ∗(20174.56, 12082.25) which
is cancer infected. The cancer-free equilibrium point P1 is associated with eigenvalues
−0.0299 and 0.1796; which implies that P1 is a saddle-type unstable point. The eigen-
values associated with the cancer infected equilibrium point P ∗ are −0.0055± 0.0692i.
It indicates that P ∗ is a stable focus node. From Figure (1)(b) it can be observed
that around point P ∗ the trajectories of the system (1) are in-going spirals as time
increases, which suggests that the population of effector cells and cancer cells are going
to be stable at point P ∗ (see Figure (1)(a)).

For the treatment parameters u = 50, and a = 1, there exist two biologically feasi-
ble equilibria for the system (1): P1(1670.82, 0) which is cancer-free and P ∗(19976.83,
10983.61) which is cancer infected. The point P1 is associated with eigenvalues of
−0.029 and 0.163, indicating P1 is unstable. The eigenvalues associated with the point
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Figure 1: (a) Time series plot and (b) parametric plot of cell population for the im-
munotherapy term u = 1, and cancer clearance term a = 1. (c) Time series plot and
(d) parametric plot of cell population for the immunotherapy term u = 50 and cancer
clearance term a = 1.

P ∗ are −0.0060± 0.0661i; implies that P ∗ is stable. From Figure (1)(d) it can be ob-
served that around the point P ∗ the trajectories of the system (1) are in-going spirals
as time increases, which suggests that the population of effector cells and cancer cells
are going to be stable at point P ∗ (see Figure (1)(c)). From Figures of (1), we can see
that there is no significant changes in the dynamics of the system (1) when we only
increase the value of the immunotherapy term.

For the treatment parameters u = 1, and a = 5, there exhibits two biolog-
ically feasible equilibria for the system (1): P1(37.48, 0) which is cancer free and
P ∗(3678.64, 2184.69) which is cancer infected. The cancer free equilibrium P1 is as-
sociated with eigenvalues −0.029 and 0.178; which implies that P1 is unstable. The
cancer infected equilibrium is associated with eigenvalues −0.0130±0.0711i; indicating
P ∗ is stable. It can also be observed from Figure (2)(b) that the trajectories of the
system converge to P ∗ and Figure (2)(a) evidence that both the cell population are
alive and stable at P ∗.

For the treatment parameters u = 50, and a = 5, the system (1) has two biolog-
ically feasible equilibria: P1(1670.82, 0) which is cancer free and P ∗(3642.58, 1183.06)
which is cancer infected. The eigenvalues corresponding to cancer free equilibrium P1

are −0.029 and 0.096, indicating P1 is unstable. The eigenvalues corresponding to the
equilibrium P ∗ are −0.0140 ± 0.0514i. Hence, P ∗ is stable. It can also be observed
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Figure 2: (a) Time series plot and (b) parametric plot of cell population for the im-
munotherapy term u = 1, and cancer clearance term a = 5. (c) Time series plot and
(d) parametric plot of cell population for the immunotherapy term u = 50 and cancer
clearance term a = 5.

from Figure (2)(d) that the trajectories of the system (1) converge to P ∗ and Figure
(2)(c) evidence that both the cell population are alive and stable at P ∗.

For the treatment parameters u = 100, and a = 1, there are two biologically feasible
equilibria for the system (1): P1(3337.48, 0) which is cancer free and P ∗(19775.06,
9862.55) which is cancer infected. The cancer free equilibrium P1 is associated with
eigenvalues −0.029 and 0.147; which implies that P1 is unstable. The cancer infected
equilibrium is associated with eigenvalues −0.0070±0.0630i; indicating P ∗ is stable. It
can also be observed from Figure (3)(b) that the trajectories of the system (1) converge
to P ∗ and Figure (3)(a) evidence that both the cell population are alive and stable at
P ∗.

For the treatment parameters u = 100, a = 5.5 there exists only one biologically
relevant equilibrium for the system (1) namely P1(3337.48, 0) which is cancer-free. The
equilibrium P1 is associated with eigenvalues −0.029 and −0.004, which indicates that
P1 is a stable node. Figure (3)(d) depicts that the trajectories of the system (1) con-
verge to a point where the tumour cell population becomes zero i.e., to the point P1. It
can also be observed from Figure (3)(c) that the effector cell population incorporated
with the treatment given can suppress the cancer growth to zero with time increases.
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Figure 3: (a) Time series plot and (b) parametric plot of cell population for the im-
munotherapy term u = 100, and cancer clearance term a = 1. (c) Time series plot and
(d) parametric plot of cell population for the immunotherapy term u = 100 and cancer
clearance term a = 5.5.

From Figures of (3), it can be observed that if we inject an optimum amount of
immunotherapy and a sufficient amount of gene therapy into the patient, the effector
cells themselves can eradicate the cancer cells. However, the high dose of immunother-
apy may cause some severe side effects. So, to reduce these side effects, we separately
apply radiation and mAb therapy in the gene therapy model. In the next part of the
simulation, we will present the effects of radiation and mAb therapy in the gene ther-
apy model.

The set of parameters used to observe the dynamics of effector cells and cancer-
ous cells for the radio-genic therapy model (2) are: q = 0.05, p = 0.1245, f = 10−3,
d = 0.03, r = 0.18, b = 10−9, and g = 105. The initial values used in these simulations
are I(0) = M(0) = 1000. The value of γ = 0.1 cell/time is estimated based on [19].
For the treatment parameters u = 1, a = 1, and γ = 0.1 cell/time, there exist two
biologically relevant equilibria for the system (2) namely Q1(37.48, 0) which is cancer
free and Q′(8401.37, 5018.33) which is cancer infected. The cancer free equilibrium Q1

is associated with eigenvalues −0.029 and 0.0796; indicating Q1 is unstable. The cancer
infected equilibrium Q′ is stable as it is associated with eigenvalues −0.0130± 0.0470i.
Figure (4)(a) depicts that at point Q′ both effector and cancer cells show damped os-
cillation behavior about zero rather than asymptotes to zero. It can also be observed
from Figure (4)(b) that the trajectories of the system (2) converge to Q′.
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Figure 4: (a) Time series plot and (b) parametric plot of cell population for the im-
munotherapy term u = 1, cancer clearance term a = 1 and radiation dose γ = 0.1.
(c) Time series plot and (d) parametric plot of cell population for the immunotherapy
term u = 50, cancer clearance term a = 1 and radiation dose γ = 0.1 cell/time.

For the treatment parameters u = 50, a = 1, and γ = 0.1 cell/time, there exist two
biologically relevant equilibria for the system (2) namely Q1(1670.82, 0) which is cancer
free and Q′(8319.04, 3988.93) which is cancer infected. The cancer free equilibrium Q1

is unstable as it is associated with eigenvalues −0.029 and 0.063, whereas the cancer in-
fected equilibrium Q′ is stable as it is associated with eigenvalues −0.0135±0.0416i. It
can also be observed from Figure (4)(d) that the trajectories of the system (2) converge
to Q′ and Figure (4)(c) evidence that both the cell population are alive and stable at
Q′. For the treatment parameters u = 1, a = 5, and γ = 0.1 cell/time, there exist two
biologically relevant equilibria for the system (2) namely Q1(37.48, 0) which is cancer
free and Q′(1615.14, 946.60) which is cancer infected. The cancer free equilibrium Q1

is unstable as it is associated with eigenvalues of −0.029 and 0.078, whereas the cancer
infected equilibrium Q′ is stable as it is associated with eigenvalues −0.0146 + 0.0460i.
It can also be observed from Figure (5)(b) that the trajectories of the system (2) con-
verge to Q′ and Figure (5)(a) evidence that both the cell population are still alive and
stable at Q′.

For the treatment parameters u = 50, a = 5, and γ = 0.1 cell/time, there exists only
one biologically relevant equilibrium for the system (2) namely Q1(1670.81, 0) which
is cancer free. The equilibrium Q1 is associated with eigenvalues −0.029 and −0.004.
Hence Q1 is a stable node. Figure (5)(c) represents that the effector cell population
incorporated with the treatment given can suppress the cancer growth to zero with
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Figure 5: (a) Time series plot and (b) parametric plot of cell population for the im-
munotherapy term u = 1, cancer clearance term a = 5 and radiation dose γ = 0.1.
(c) Time series plot and (d) parametric plot of cell population for the immunotherapy
term u = 50, cancer clearance term a = 5 and radiation dose γ = 0.1 cell/time.

time increase. It can also be verified from Figure (5)(d) that the trajectories of the
system (2) converge to a point where tumor cell population becomes zero i.e., to the
point Q1.

We have used Table (1) and Table (2) for simulating the mAb-gene therapy model.
Here, we have assumed that the administration of mAb drugs is continual. The initial
values used in these simulations are I(0) = M(0) = 1000, and C(0) = 0.01. We have
also assumed that the value of v at time t = 0 is 0.01.
For the treatment parameters u = 1, a = 1 and in the presence of mAb drug, there exist
two biologically relevant equilibria for the system, (3) namely R1(37.48, 0, 0.072) which
is cancer free and R̂(15318.04, 9168.34, 0.072) which is cancer infected. The cancer free
equilibrium R1 is associated with eigenvalues −0.138, 0.14 and −0.029, which indicates
that R1 is unstable. The cancer infected equilibrium R̂ is stable as it is associated with
eigenvalues −0.0100±0.0600i and −0.1400. It can also be observed from Figure (6)(c)
that the trajectories of the system (3) converge to R̂ and Figure (6)(a) evidence that
both the cell population are still alive and stable at R̂.

For the treatment parameters u = 50, a = 5, and in the presence of mAb drug, there
exist two biologically relevant equilibria for the system, (3) namely R1(1670.82, 0, 0.072)
which is cancer free and R̂(2825.79, 692.99, 0.072) which is cancer infected. The cancer
free equilibrium R1 is associated with eigenvalues −0.138, 0.06 and −0.029, indicat-
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Figure 6: (a) Time series plot and (c) parametric plot of cell population for the im-
munotherapy term u = 1, and cancer clearance term a = 1. (d) Time series plot and
(f) parametric plot of cell population for the immunotherapy term u = 50, and cancer
clearance term a = 5. Time series plot of mAb drug is presented in (b) and (e).

ing R1 is unstable. The eigenvalues corresponding to the cancer infected equilibrium
R̂ are −0.0145 ± 0.0355i and −0.1400, which implies that R̂ is stable. It can also
be observed from Figure (6)(f) that the trajectories of the system (3) converge to
R̂ and Figure (6)(d) evidence that both the cell population are still alive and sta-
ble at R̂. For the treatment parameters u = 50, a = 8.5 and in the presence of
mAb drugs, there exists only one biologically relevant equilibrium for the system, (3)
namely R1(1670.82, 0, 0.072) which is cancer free. The equilibrium R1 is a stable node
as it is associated with eigenvalues −0.138, −0.0016 and −0.029. Figure (7)(a), (7)(b)
represents that the effector cell population incorporated with the treatment given can
suppress the cancer growth to zero with time increase and Figure (7)(c)) depicts that
the trajectories of the system (3) converge to a point where the tumor cell population
becomes zero i.e., to the point R1.
For the treatment parameters u = 85, a = 5 and in the presence of mAb drugs,
there exists only one biologically relevant equilibrium for the system, (3) namely
R1(2837.48, 0, 0.072) which is cancer free. The equilibrium R1 is a stable node as
it is associated with eigenvalues −0.138, −0.0015 and −0.029. Figure (7)(d), (7)(e)
represents that the effector cell population incorporated with the treatment given can
suppress the cancer growth to zero with time increase and Figure (7)(f)) depicts that
the trajectories of the system (3) converge to a point where the tumor cell population
becomes zero i.e., to the point R1.
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Figure 7: (a) Time series plot and (c) parametric plot of cell population for the im-
munotherapy term u = 50, and cancer clearance term a = 8.5. (d) Time series plot
and (f) parametric plot of cell population for the immunotherapy term u = 85, and
cancer clearance term a = 5. Time series plot of mAb drug is presented in (b) and (e).

4 Discussion and conclusion

This study introduces a cancer treatment model with non-linear ordinary differential
equations under different treatment procedures. In the first, we have used gene therapy
and immunotherapy as a combination treatment for cancer. The second treatment
procedure applies a combination of radiotherapy, gene therapy, and immunotherapy.
The third treatment procedure is related to a combined treatment process of gene
therapy, immunotherapy and mAb therapy. Local stability at equilibrium points for
each of the models has been discussed. The conditions for global stability at the
tumour-free equilibria of the radio-genic therapy and mAb-gene therapy model have
been derived. We have done the numerical simulation by keeping all the parameters
constant and varying the treatment parameters of the models. Our theoretical and
numerical findings suggest the following.

1. If the immunotherapy term u = 100 and the cancer clearance rate of gene therapy
a = 5.5, the gene therapy model has only a cancer-free state. This means that
if we inject the optimum level of immunotherapy and gene therapy so that the
cancer clearance rate of gene therapy is a = 5.5, the patient can recover from the
disease.

2. If radiation therapy is combined with immunotherapy and gene therapy, the
patient will recover from the disease for the treatment parameters immunotherapy
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term u = 50, cancer clearance rate of gene therapy a = 5, and radiation dose
γ = 0.1.

3. For the case of combination treatment of mAb-gene therapy, the patient will
recover from the disease if the treatment parameters immunotherapy term u = 50,
and cancer clearance rate of gene therapy a = 8.5 or immunotherapy term u = 85,
and cancer clearance rate of gene therapy a = 5.

In [28], the authors reported that the optimum amount of the treatment parame-
ters u and a could clear the tumour. Here, we have found that instead of injecting the
optimum level of the treatment parameters u and a, we could achieve better results
by combining radiotherapy and mAb therapy with gene therapy. However, our study
has been done based on a theoretical approach. Therefore, clinical verification is re-
quired before claiming that our findings are of major importance. Furthermore, finding
the minimum amount of drugs for prescribed treatment to reduce cancer growth by
incorporating an optimal control approach is also left out as future work.
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